

Distributed Point Cloud Data Management and Analysis

Balthasar Teuscher
Technical University of Munich
TUM School of Engineering and Design
Professorship of Big Geospatial Data Management
Bonn, 15. September 2025

Context

- Dissertation topic:
 - "Distributed Point Cloud Data Management and Analysis"
- Overarching research question:
 - "How to manage point cloud data to facilitate efficient and effective visualization and analysis?"
- Focus on out-of-core computing

Background: Point Cloud Data Management

Data provisioning

- Various text and binary formats such as LAS, LAZ, COPC, and Potree
- Optimized for either simplicity, archival, or visualization

Tooling

- Libraries and CLI such as PDAL, laspy, LAStools and CloudCompare
- Scripting, ETL, batch-processing, analytical workflows
- In-memory or auxiliary indices, single-threaded

Data management

- Monolithic Database Management Systems with dedicated extensions
- Subpar indexing and query capabilities, intransparent storage, slow ingestion and storage amplification

=> Distributed and parallel processing!

Background: Visualization

- a) Point Cloud
 - Unordered set of points
- b) Layered octree (Gobbetti and Marton, 2004)
 - Points in parent nodes are sampled from child nodes to generate Levels of Detail
- c) Dedicated format layout (COPC / Potree)
 - Contains a hierarchical index
- d) Analytics format layout (Parquet)
 - No hierarchical relationship between row groups

=> Importance augmentation & partitioning!

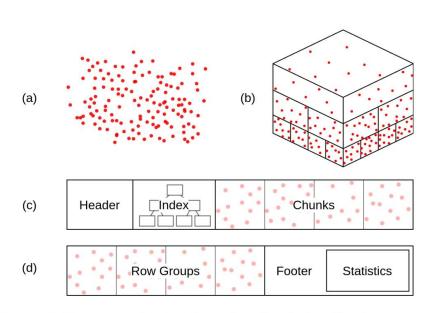


Figure 3. Data organization for point cloud visualization.

Background: Analysis

- Visualization and analysis generally rely on separate solutions.
- Analytical approaches are becoming more versatile.
 - Increasingly based on machine learning graph, point set, voxels, grid
- Scalable data management systems are seldom used for modern analytics and visualization.
 - Lack of query capabilities, interoperability
 - Queries are fixed and materialized

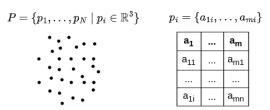
=> Data retrieval needs!

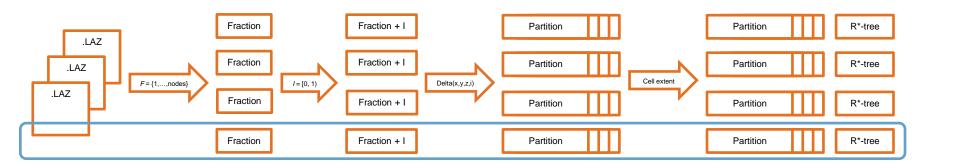
Random Data Distribution

Teuscher, B., & Werner, M. (2024). Random Data Distribution for Efficient Parallel Point Cloud Processing. *AGILE: GIScience Series*, *5*, 15. https://doi.org/10.5194/agile-giss-5-15-2024

Distribution Methodology

- Coordinator and multiple worker nodes
- Random data distribution
- Random importance value
- Space partitioning (x, y, z, importance)
- R*-tree index of partitions





Query Fragmentation

- Range queries over spatial and importance dimensions
 - Full

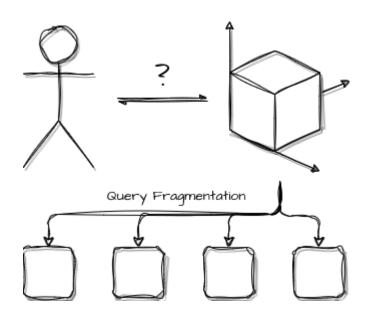
```
/points?bounds={xmin},{ymin},{zmin},0,{xmax},{ymax},1/points?bounds=174000,315000,0,0,174060,315060,1000,1
```

- P-sampling

```
/points?bounds=\{-\inf\}, \{-\inf\}, \{-\inf\}, \{+\inf\}, \{+\inf\}, \{+\inf\}, \{p\}\}/points?p=0.01
```

- Facet-sampling

```
/points?bounds={xmin},{ymin},{zmin},0,{xmax},{ymax},{zmax},0.5 /points?bounds={xmin},{ymin},{zmin},0.5,{xmax},{ymax},{zmax},1
```



Load and Indexing Performance

File	C_69AZ1.LAZ (743MB, 149 676 342 Points)						
Preprocessing	Load		Index		Total		
	Time (s)	Size (MB)	Time (s)	Size (MB)	Time (s)	Size (MB)	Throughput (Points/s)
Potree	6.2		17.9		24.0	4 141	6 230 284
PCServe	792.0	15 138	318.0	3 362	1110.0	18 500	134 844
Ours (in-memory)	4.1	8 558	1.0	1 267	5.1	9 715	29 114 246
Ours (on-disk)	11.5	7 442	1.9	1 267	13.3	8 709	11 235 275

Range Query Performance

	Dataset size (M Points)	Query type (box,sampling,mixed)	Request duration (ms)	Result size (Points)
PCServe			598	38 981
Ours (in-memory, single node)	150 150	box sampling	60 166	58 616 74 343
Ours (on-disk, single node)	150	mixed	196	74 926
Ours (in-memory, 8 workers)	4 500 4 500	box sampling	166 599	59 259 45 304

Conlusions

- Random data distribution & materialized importance & 4D range queries work well together
- Simple push down, equal resource usage
- Data representation based on columnar batches proved to be performant
- 4.5 billion in memory need to go out of core!

Point Cloud Lakehouse

Teuscher, B., & Werner, M. (2025). Point Cloud Data Management for Analytics in a Lakehouse. *AGILE: GIScience Series, 6.* https://doi.org/10.5194/agile-giss-6-47-2025

- NoDB philosophy (Alagiannis et al., 2012)
 - Access raw files directly
 - Combine with a query engine
- Lakehouse pattern (Armbrust, 2021)
 - Cloud environments
 - Decoupling of storage and compute
 - Use optimized formats

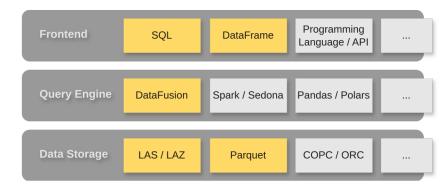


Figure 1. Lakehouse architecture for point cloud data analytics.

Data Formats: Apache Parquet

- Traditional formats
 - None or high compression ratio
 - Record layout (sequential points)
 - Limited access and indexing facilities
- Formats for analytics
 - Inspired by Dremel (Melnik et al., 2010)
 - Partition Attributes Across (Ailamaki et al., 2002)
 - Various encoding and compression schemes
 - Metadata in footer with min-max statistics
- Memory representations
 - Zero copy, self-describing, columnar

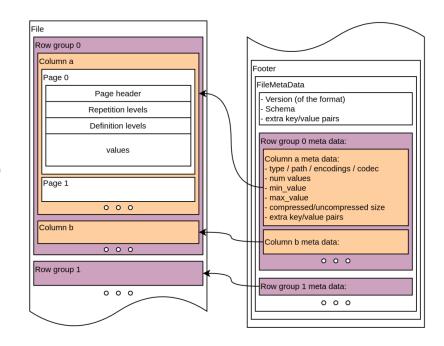


Figure 2. The Apache Parquet file format layout.

Use Case: Visualization

- Point cloud
 - Unordered set of points
- Layered octree (Gobbetti and Marton, 2004)
 - Points in parent nodes are sampled from child nodes to generate levels of detail
- Dedicated format layout (COPC)
 - Contains hierarchical index
- Analytics format layout (Parquet)
 - No hierarchical relationship between row groups

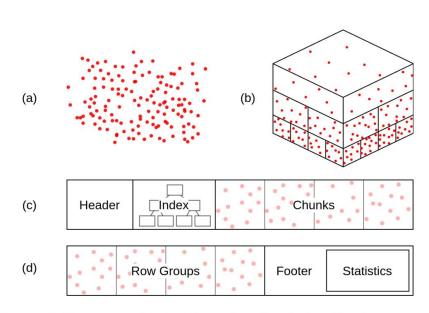


Figure 3. Data organization for point cloud visualization.

Importance Augmentation: Continuous Level of Detail

- Continuous importance augmentation with a random value in the range [0, 1) per point.
 - Given a point cloud with n points, finding out the depth d of the tree respecting a certain amount of points per cell m can be done naively by

$$d = \lceil \log_p(\frac{n}{m}) \rceil$$

where p is the number of child nodes.

 From this, the importance range for a certain level can be derived and added as a dimension to the target bounding volumes, which then can be used to sample points to the respective nodes.

Partitioning: Windowed Bounding Volumes

- Windowed bounding volumes partitioning
 - Split the extent of the point cloud into a set of reading windows W and target partitions BV
 - Iteratively process windows by loading overlapping points
 - Mapped to the overlapping bounding volumes in memory
 - Write to disk once they do not intersect with remaining reading windows
- Arbitrary space partitioning
- Parallel and out-of-core through asynchronous stream processing
- Generic over the number of dimensions and hierarchical structure

```
Algorithm 1 Windowed bounding volumes partitioning.
 1: procedure Partition(P)
                                                  \triangleright set of points P
        E \leftarrow \text{extent of } P
        BV \leftarrow \text{split } E \text{ into a set of bounding volumes}
        W \leftarrow \text{split } E \text{ into a set of reading windows}
        C \leftarrow \emptyset
                                               ▷ cash (in-memory)
 5:
        for all w \in W do

    iterate over windows

            P_w \leftarrow \text{points contained by } w
            BV_w \leftarrow bv \in BV intersecting w
            for all bv \in BV_w do \triangleright map points to volumes
9:
                 P_{bv} \leftarrow \{p \mid p \in P_w\} \text{ intersecting } bv
10:
                 C[bv] \leftarrow C[bv] \cup P_{bv}
11:
            end for
12:
            W \leftarrow W \setminus w
13:
                                       ▶ remove current window
            for all bv \in BV_w do
14:
                 if by disjoint W then
15:
                     evict C[bv]
                                                     ▶ write to disk
16:
                 end if
17:
            end for
18:
        end for
19:
20: end procedure
```

Evaluation: Storage Footprint

- Smaller than LAS
 - Even with resolved coordinates and materialized importance
- About 1.5 times larger than LAZ
 - Compression is optimized for speed, not compression ratio
- Comparable to Potree

Table 1. Storage footprint of various coordinate encodings compared relative to LAZ.

Format	Coords	cLoI	Compression	Size (rel.)
LAS	$i32^a$	-	-	4.25
LAZ	$i32^a$	-	LASzip	1.00
Parquet	$i32^b$	-	-	2.76
Parquet	f64		-	3.71
Parquet	f64	f32	-	4.26
Parquet	$i32^b$	-	zstd(level3)	1.56
Parquet	f64	-	zstd(level3)	1.59
Parquet	f64	f32	zstd(level3)	2.10
Potree	(missing)	-	-	4.12

^a Scale and offset in header.

^b Scale and offset per point.

Evaluation: Data Loading and Indexing

- Instant DBMS with LAS/LAZ files
 - No conversion
- Extracting statistics is a complete scan
 - Decompression is bottleneck
- Conversion to Parquet without partitioning
 - Includes reading, conversion, and writing
- Partitioning with different schemes
 - Scheme is not influencing much
 - Performance comparable to Potree

Table 2. Data loading performance of \sim 2B points.

Format	Partitioning	Statistics	Time	Throughput
LAZ	-	file	0.0s	-
LAZ	-	chunk	90.6s	22.0MP/s
Parquet	-	page	209.3s	9.5MP/s
Parquet	grid(xy)	page	375.6s	5.3MP/s
Parquet	grid(xyi)	page	358.6s	5.6MP/s
Parquet	quadtree	page	398.2s	5.0MP/s
Potree	octree	node	424.5s	4.7MP/s

Evaluation: Query Performance

Table 3. Query performance of selected queries on \sim 200M and \sim 2B points; small rectangle (S_RECT), medium rectangle (M_RECT), nearest neighbours (NN_1000) and importance (I_700k).

Dataset	AHN3 extract with ∼200M				AHN3 extract with ∼2B			
Query	S_RECT	M_RECT	NN_1000	I_700k	S_RECT	M_RECT	NN_1000	I_700k
Points returned	74k	726k	1k	700k	74k	726k	1k	700k
Selectivity	0.5%e	4.0%o	0.025% o	3.50%	0.037%	0.363%o	0.002% o	0.350%
LAZ	12.976s	13.003s	13.599s	13.787s	23.304s	23.295s	23.312s	90.415s
LAZ + statistics	0.427s	0.848s	0.378s	13.359s	0.194s	0.514s	0.104s	114.891s
Parquet (convert)	0.212s	0.282s	0.219s	0.819s	0.311s	0.364s	0.537s	11.130s
Parquet (grid xy)	0.126s	0.173s	0.123s	0.773s	0.288s	0.321s	0.313s	12.185s
Parquet (grid xyi)	0.192s	0.264s	0.151s	0.460s	0.328s	0.362s	0.446s	1.305s
Parquet (quadtree)	0.149s	0.221s	0.130s	0.167s	0.311s	0.376s	0.333s	0.488s

Evaluation: Interactive Visualization

- Below 300ms for typical visualization queries
 - Result set is about 350k points per query
- R*-tree index can speed it up even more
 - The query engine is still improving

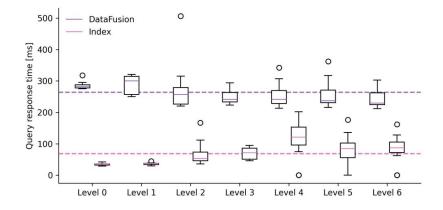


Figure 4. Vizualization query performance on different levels.

Conclusions

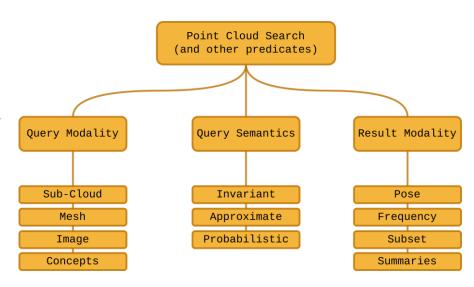
Offers scalable and performant analytics capabilities while simultaneously supporting visualization

- No active components
- Ideal for elastic computing
- No domain-specific adaptations
- Access to a large ecosystem

Taxonomy

Teuscher, B., Walther, P., Wang, J., & Werner, M. (2025). A Taxonomy of Point Cloud Search. 3DGeoInfo (forthcoming).

- Query Modality
 - How is the query expressed? focus on the geometric aspect of queries, specifically their encoding
- Query Semantics
 - How is the query interpreted?
- Result Modality
 - How is the query answered?



Evaluation

retrieval tasks.

neighborhood, range, sampling,

visualization, registration,

aggregation, and semantic

>20 example queries covering

Query

Approximate kNN Radius Vector

Polygon / Cone / Solid

Poisson Disk Sampling

Furthest Points Sampling

Discrete Sampling

Random Sampling

Range / Box

Slicing

(FPS)

Ray

View Frustum

Trajectory

Aggregate

Window

Attribute

Join

TUM | Professorship for Big Geospatial Data Manage Toent | Balthasar Teuscher Concept

Co-registration

Point set registration

Image registration

k-Nearest Neighbor (kNN)

Similarity search Spatio-Temporal filtering Spatio-Temporal subsetting Manifold intersection, Topological analysis Environmental Data Retrieval continuous Level of Detail, Thinning, Sampling Disk-/blue noise sampling, Downsampling Downsamling, Representative points

Visibility analysis (Field of View), Visualization

Movement analysis, Collision detection

Iterative closest point (ICP) / Alignment

Spatio-temporal change detection

Natural language, Semantic search

Part search, Alignment

Rendering, Surface intersection, Visibility analysis

Camera position and orientation / Photogrammetry

Elevation, Data fusion, Topological analysis

Filter by class or label, Semantic search

Point density, Centroid, Representative points/values

23

Use Cases /

Prominent Application

Neighbourhood descriptors and features

Neighbourhood descriptors and features

Neighbourhood descriptors and features

Query

Α

Semantic

I, (A, P)

P, (I, A)

I. (A. P)

I, (A, P)

I, (A, P)

I, (A)

P

I, (P)

I, (P)

I, (P)

Any

Any

A, (P)

I, (A, P)

P, (I, A)

Any

Query Modality

Sub-Cloud

Sub-Cloud

Sub-Cloud

Sub-Cloud

Mesh

(Mesh)

Mesh

Any

Any

Any

Any

Mesh

Sub-Cloud

Sub-Cloud

Sub-Cloud

Sub-Cloud

Image

Any

Any

Any

Sub-Cloud

Result

Modality

Subset /

Subset / Summary

Subset /

Summary

Subset /

Subset

Subset

Subset

Subset

Subset

Subset

Subset

Subset

Pose /

Subset

Pose

Pose /

Pose

Frequency

Summary

Summary

Subset

Subset

Any

Frequency

Summary

Summary

Search Space

- What is a sub-cloud?
- · Searchable space vs. indexable space
 - What is transparent and what is opaque to the system?
- Examples
 - KV store
 - pgpointcloud
 - LAS

$$P \subseteq \prod_{i=1}^{m} D_i,$$

Representations

- Various possible point cloud representations:
 - raw point set
 - voxels,
 - mesh,
 - graph,
 - **–** ..
- Tooling and systems are often specialized for a single one
- Can be considered another facet to the taxonomy

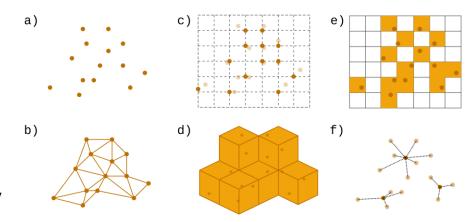


Illustration of various point cloud modalities: a) raw points, b) mesh, c) grid rounded, d) voxel, e) raster, f) skeleton (graph).

Recommendations

- Even though spatial attributes are prominent, allow equal treatment of all attributes for query support.
- Facilitate dynamic schema evolution to support semantic enrichment by adding attributes transparently and readily queryable.
- Support heterogeneous data representations and seamless transformations between them.
- Assume probabilistic and approximate query semantics as the default to incorporate scalability.
- Consider a multi-representation data model tightly integrated with indexing capabilities.

Outlook

- Towards multi-user real-time visualization and editing.
 - Transaction capabilities
 - Investigate suitable table formats or create our own
- Showcase analytical workflows.
 - Support multiple representations
 - Semantic augmentation
 - Spatio-temporal change detection
 - ...
- Contextual importance
 - Learned importance based on reconstructive loss with ray tracing

Table 1
Multi-representation point cloud data model schema in a flat table design.

O		
Modality	Attribute	Description
Point	pid	Unique identifier
Point	x	First coordinate
Point	У	Second coordinate
Point	Z	Third coordinate
Point	i	Importance
Point	virtual	Flag for virtual points
Point	a_i	Additional point attributes
Graph	gids	Unique graph identifier
Graph	endpoint	Second edge vertex (pid)
Graph	directed	Direction flag (un-/directed)
Graph	weight	Edge weight
Graph	e_i	Additional edge attributes
Mesh	mids	Unique mesh identifier
Mesh	v2_pid	Second triangle vertex (pid)
Mesh	v3_pid	Third triangle vertex (pid)
Mesh	m_i	Additional mesh attributes
Mesh	t_i	Additional triangle attributes
Voxel	code	Well-known voxel code
Voxel	v_x	First voxel coordinate
Voxel	v_y	Second voxel coordinate
Voxel	v_z	Third voxel coordinate
Voxel	size	Voxel size
Voxel	v_i	Additional voxel attributes

Thank you!

