

LARGE-SCALE LAND COVER CLASSIFICATION FROM SPARSE LABELS USING OBJECT-BASED DEEP LEARNING METHODS

JOHANNES LEONHARDT

DGK PHD COLLOQUIUM SEPTEMBER 15, 2025

I use land cover data to identify how **urban areas** have developed over time.

I use land cover data to identify how **urban areas** have developed over time.

I need to know where **fields** are to identify which **crops** are grown there.

I use land cover data to identify how **urban areas** have developed over time.

I need to know where **fields** are to identify which **crops** are grown there.

Land cover maps help me monitor **protected areas**.

I use land cover data to identify how **urban areas** have developed over time.

I need to know where **fields** are to identify which **crops** are grown there.

Land cover maps help me monitor **protected areas**.

I study the impact of **land cover change** on the **regional climate**.

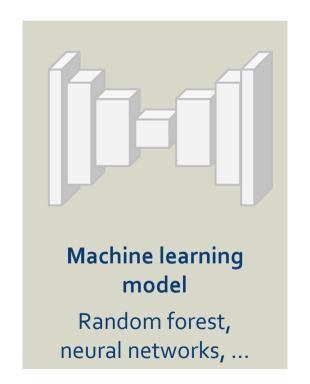
I use land cover data to identify how **urban areas** have developed over time.

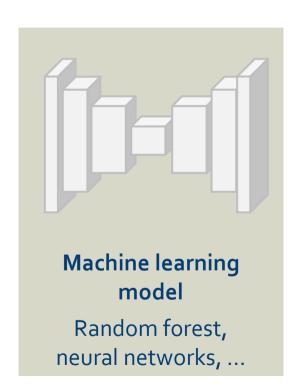
I need to know where **fields** are to identify which **crops** are grown there.

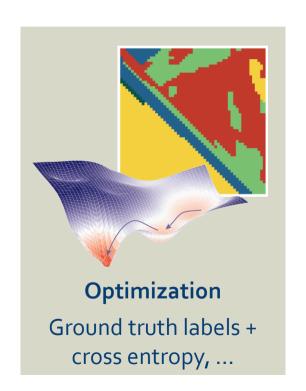
Land cover maps help me monitor **protected areas**.

I study the impact of **land cover change** on the **regional climate**.

→ Need for accurate large-scale land cover maps







LABELS FOR LARGE-SCALE LAND COVER CLASSIFICATION

Annotations – Images are manually interpreted by annotators

- + Dense labels
- Expensive to obtain for large scales
- Subject to label errors

12

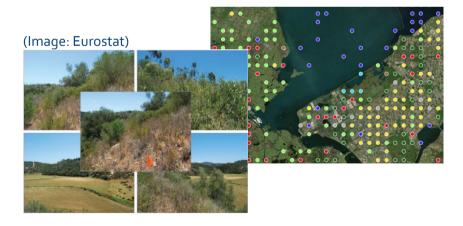
LABELS FOR LARGE-SCALE LAND COVER CLASSIFICATION

Annotations – Images are manually interpreted by annotators

- + Dense labels
- Expensive to obtain for large scales
- Subject to label errors

In-situ – Data from surveys is harmonized with images and used as labels

- + Readily available
- + High quality
- Sparse labels



EXISTING METHODS USING SPARSE LABELS

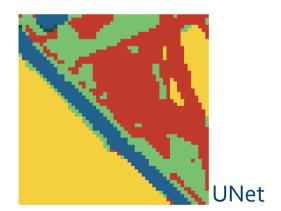
 Pixel-wise or **object-wise** classification with rule-based or simple deep learning methods

(e.g., Venter et al., 2021; Mirmazloumi et al., 2022)

Deep learning methods from computer vision (UNet, vision transformers, ...) and semi-supervised learning
 (e.g., Galatola et al., 2023; Sharma et al., 2024)

Image

Objectwise MLF



→ Tradeoff between **accuracy** and **fragmentation**

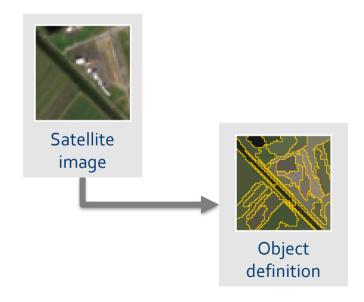
EXISTING METHODS USING SPARSE LABELS

 Pixel-wise or **object-wise** classification with rule-based or simple deep learning methods

(e.g., Venter et al., 2021; Mirmazloumi et al., 2022)

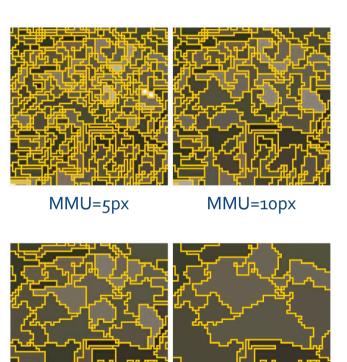
Deep learning methods from computer vision (UNet, vision transformers, ...) and semi-supervised learning
 (e.g., Galatola et al., 2023; Sharma et al., 2024)

OUR FRAMEWORK



OBJECT DEFINITION

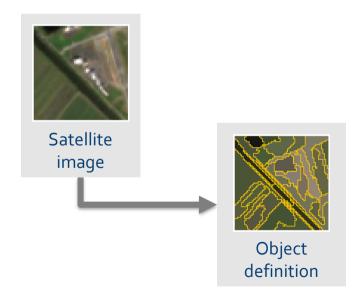
- Objects defined by graph-based
 Felzenszwalb-Huttenlocher
 algorithm for image
 segmentation which groups
 spectrally and spatially nearby
 pixels
- Minimum mapping unit (MMU)
 can be defined by min. area
 parameter
- MMU=1px → Each pixel is an object



MMU=20px

MMU=40px

OUR FRAMEWORK

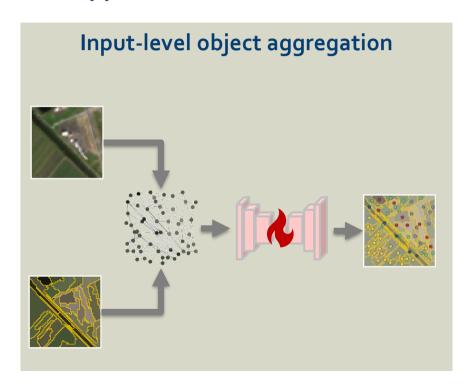


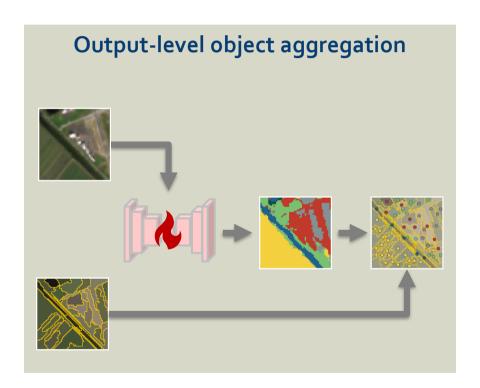
OUR FRAMEWORK



OBJECT-BASED DEEP LEARNING CLASSIFIER

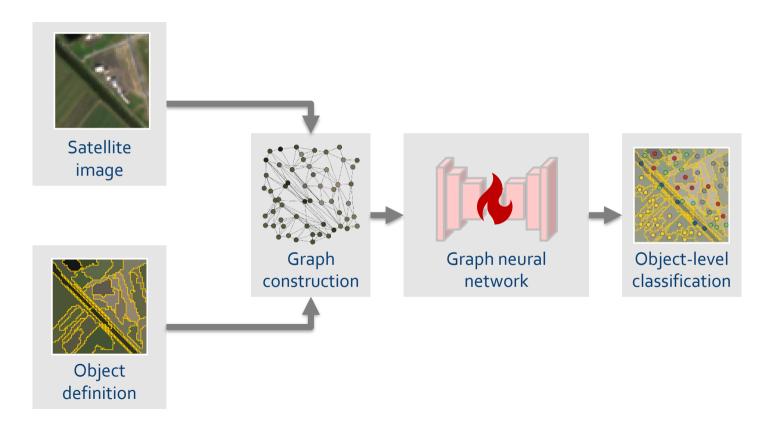
Two approaches





20

INPUT-LEVEL OBJECT AGGREGATION



21

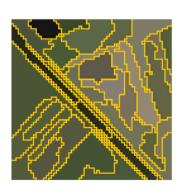
INPUT-LEVEL OBJECT AGGREGATION

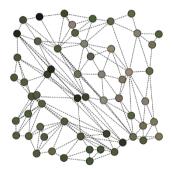
Graph construction

Each object/segment is represented as a node

Node features

- Mean intensities
- Variability: Minimum, maximum, and standard deviation of intensities
- Geometry: Size, radial dispersion, ...
- Edges are based on region adjacency





INPUT-LEVEL OBJECT AGGREGATION

Graph neural networks

- Similar to convolutional neural networks, but operate on graphs instead of images
- Different graph convolution operators for aggregating data across neighborhoods
 - GCN, GraphSAGE, GAT, Transformer
- Different architectures
 - BaseGNN, Graph UNet

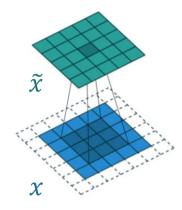
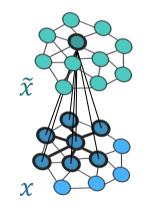
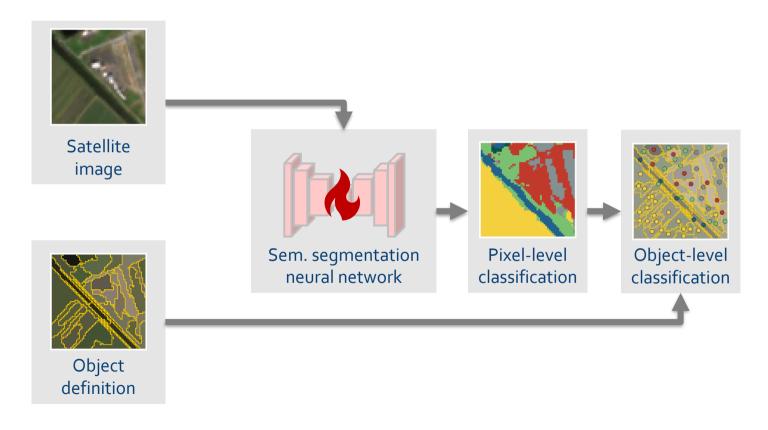


Image convolution (Image: Prof. Dr. Johannes Maucher)



Graph convolution

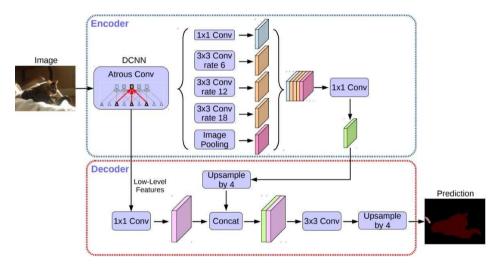
OUTPUT-LEVEL OBJECT AGGREGATION



OUTPUT-LEVEL OBJECT AGGREGATION

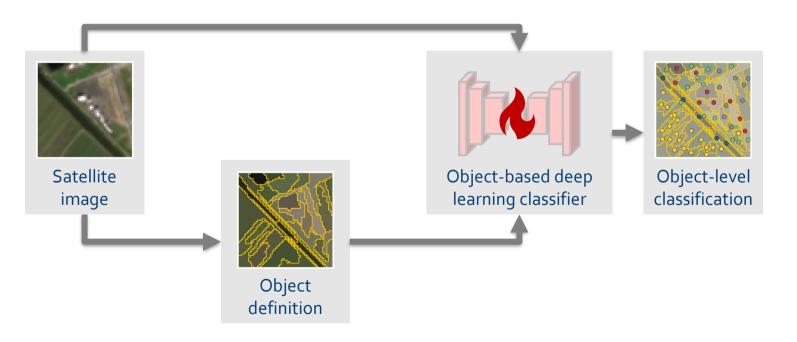
Semantic segmentation neural networks

- BaseCNN, Unet, UNet++,
 DeepLabV3, Segformer
- Important detail: Images need to be upscaled prior to classifications

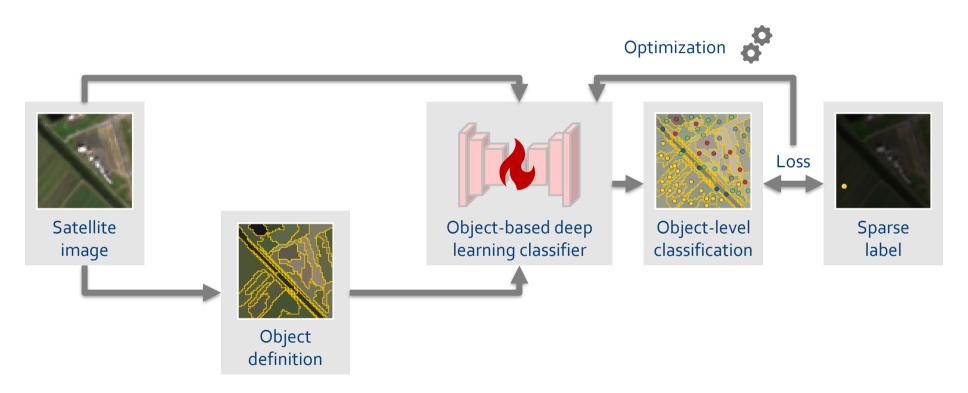


DeepLabV3 (Chen et al., 2017)

OUR FRAMEWORK



OUR FRAMEWORK



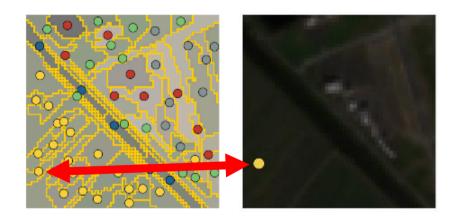
OPTIMIZATION WITH SPARSE LABELS

Sparse cross entropy loss

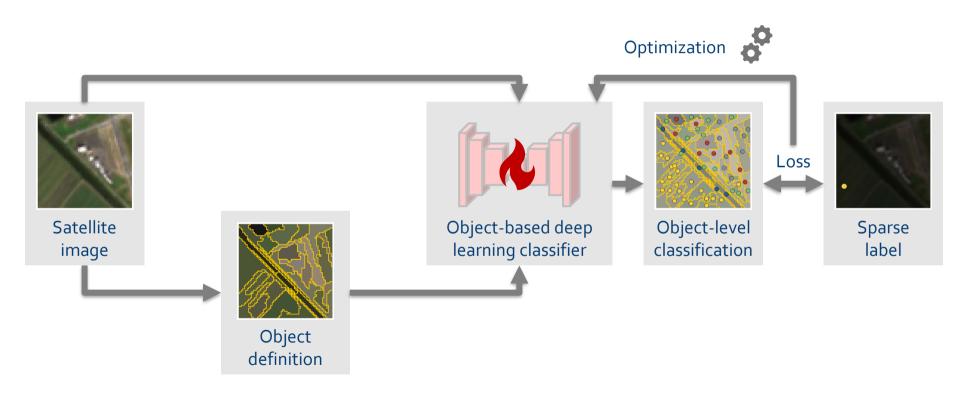
 Uses standard classification cross entropy loss

$$L(\hat{y}, y) = -\sum_{k \in K} y_k \log \hat{y}_k$$

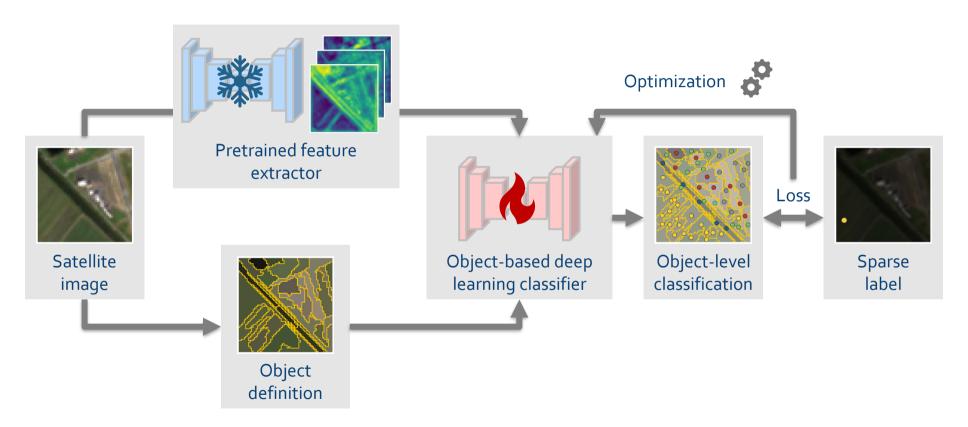
- Only evaluate the prediction at pixels where ground truth labels are given
- Object aggregation leads to effective increase of portion of labeled data



OUR FRAMEWORK

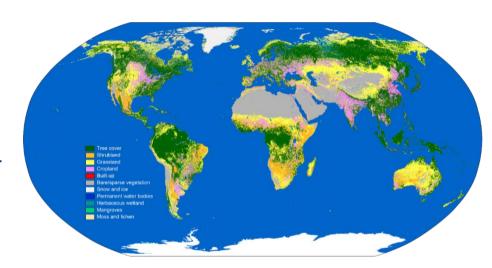


OUR FRAMEWORK



PRETRAINED FEATURE EXTRACTOR

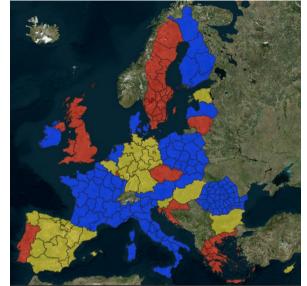
- Use a pretrained neural network to extract meaningful features from the satellite images
- Here, pixel-wise model is pretrained with ESA World Cover data as pseudolabels
- Use feature maps from penultimate layer as inputs to the object-based deep learning classifier

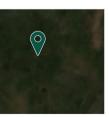


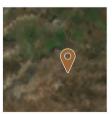
Zanaga et al. (2021)

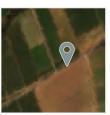
OUR DATASET

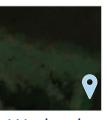
- Images: Sentinel-2 (R-G-B-NIR)
- Sparse labels: Eurostat's Land
 Use/Cover Area frame Survey (LUCAS)
- 337854 samples from 2018











Artificial land

Cropland

Woodland

Shrubland

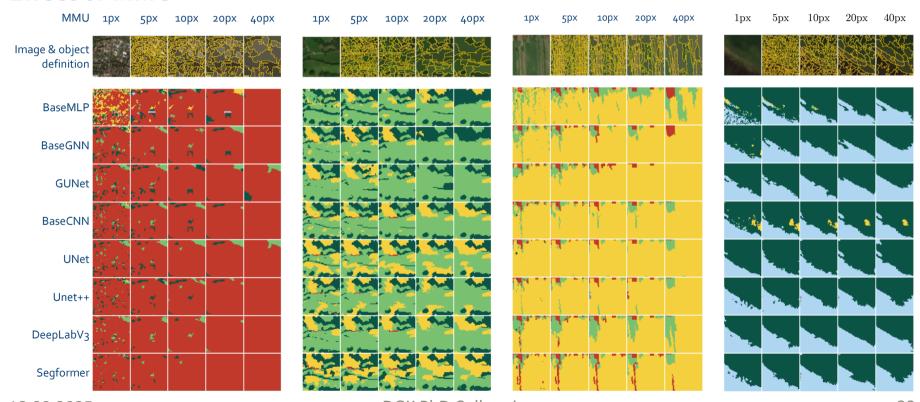
Grassland

Bare land, lichens, moss

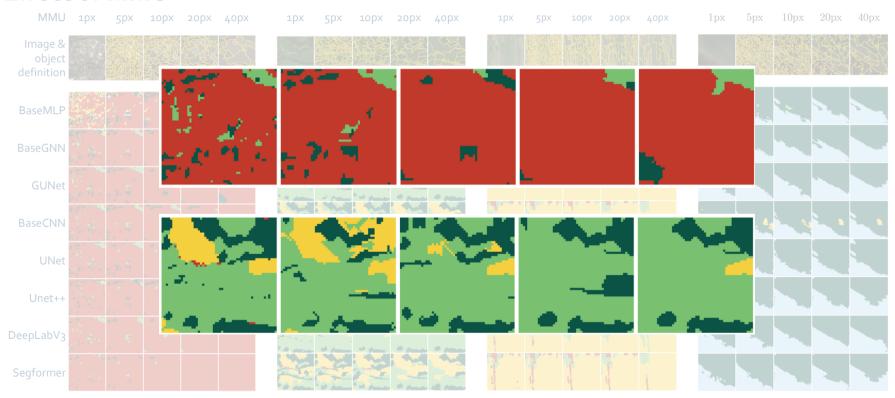
Water

Wetlands

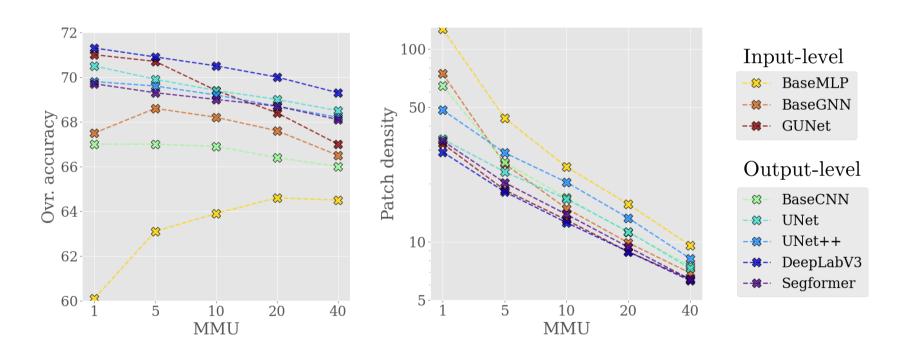
Effect of MMU



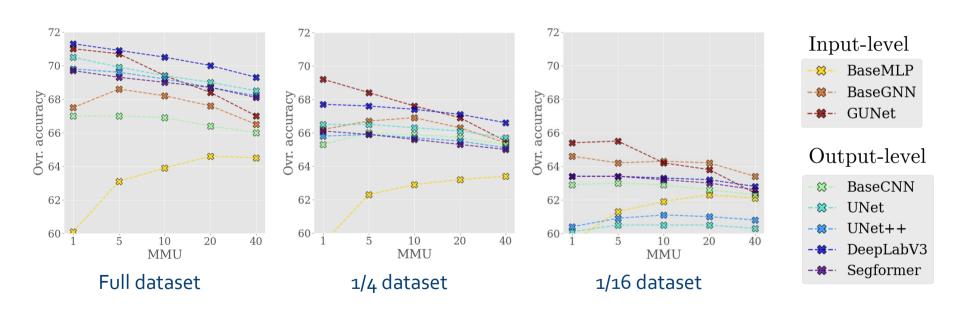
Effect of MMU



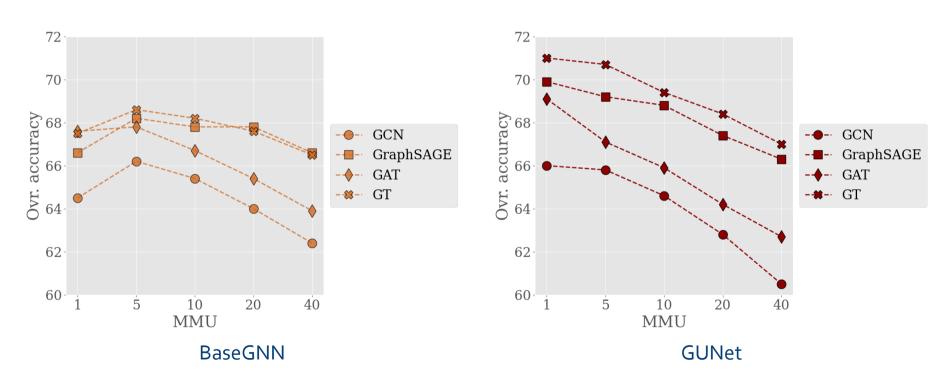
Effect of MMU



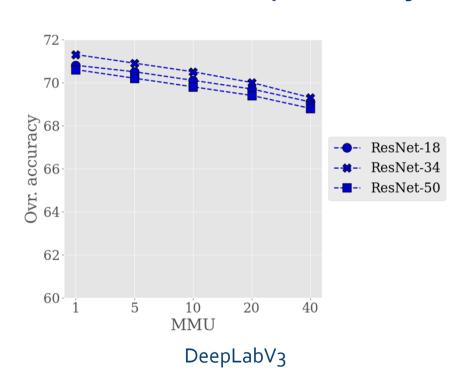
Effect of dataset size

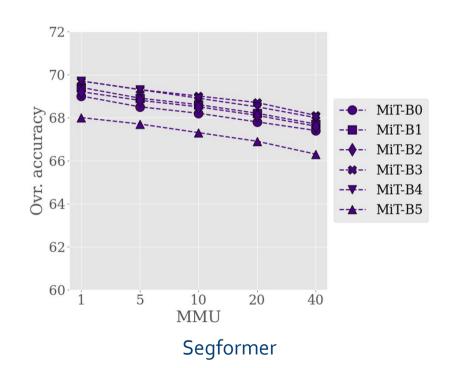


Ablation studies – Input-level object aggregation

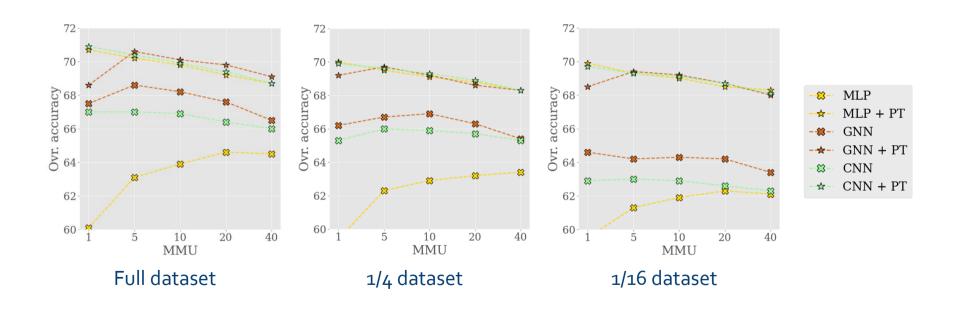


Ablation studies – Output-level object aggregation

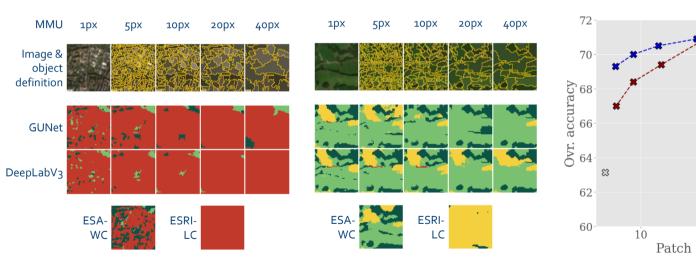


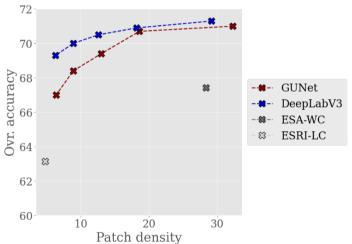


Integration of features from pretrained model



Comparison to third-party land cover products



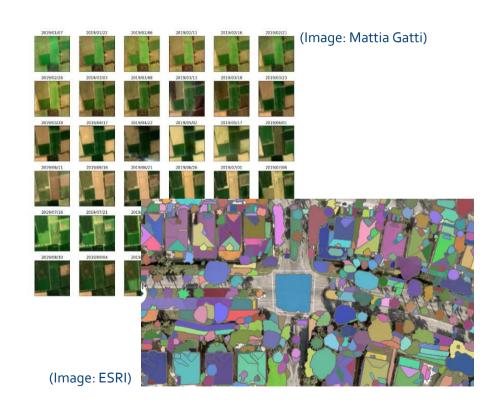


KEYTAKEAWAYS

- Object-based deep learning methods provide more coherent maps with similar accuracies as pixel-wise methods.
- Input-level aggregation works better for small datasets; output-level aggregation works better for large datasets.
- Features from pretrained models improve accuracy and reduce data demand.
- Produced maps are more accurate than existing large-scale products.

FUTURE WORK

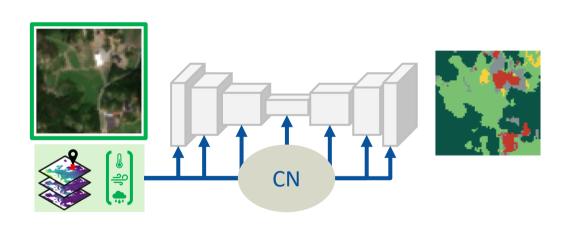
- Generalization of the object-based classification framework to satellite image time series
- Assess the suitability of foundation models into the framework
 - Feature extractors (e.g. Prithvi-EO, AlphaEarth)
 - Object definition (SAM)



OTHER WORK

Climate-conditional land cover classification

- Integrate climatic auxiliary data into neural networks for land cover classification to tackle geographic data shift
- Use climate-conditional normalization (CN) layers
- Improves accuracy of CNN and transformer-based classifiers



OTHER WORK

Climate-conditional satellite image editing

- Use diffusion autoencoder model to simulate climatic variation in satellite imagery
- Can be used for data augmentation, leading to more accurate and generalizable classification when training on geographically limited datasets

