Mapping and Semantic Perception in Urban Environments

Jens Behley

Mapping the Environment

Digital Twin

Autonomous Operation

Understanding the Environment

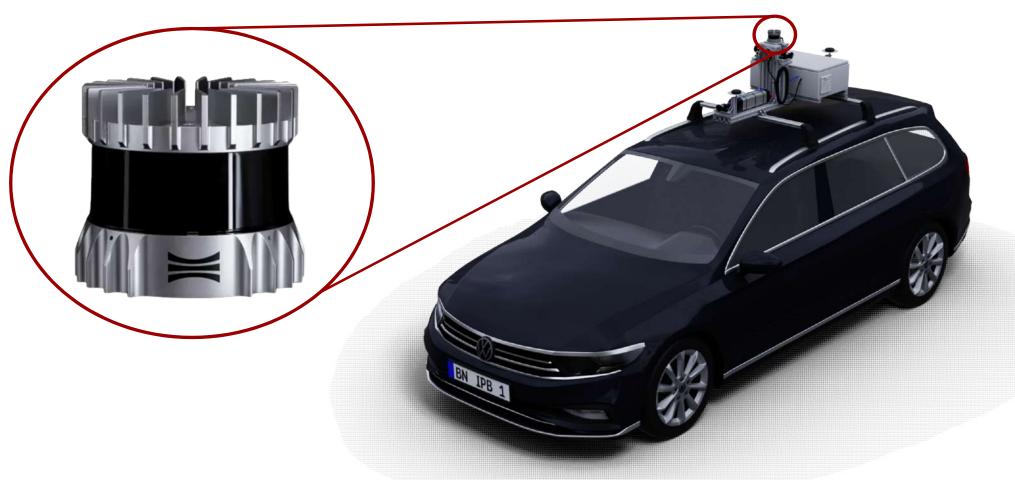
- Ego-pose of the vehicle
- Location and velocity of all traffic participants
- Scene Semantics: drivable areas, lanes, traffic signs, parking areas,
- State of traffic lights, Police officers, ...

- Future locations of traffic participants
- Intend of traffic participants
- Traffic situation and interaction between traffic participants

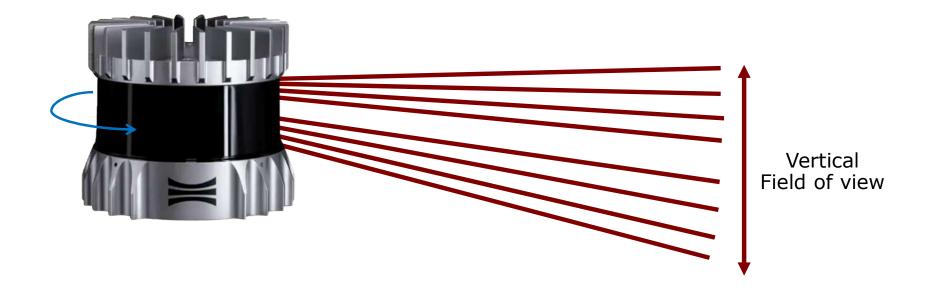
Scene interpretation

Scene understanding

3D LiDAR Sensor

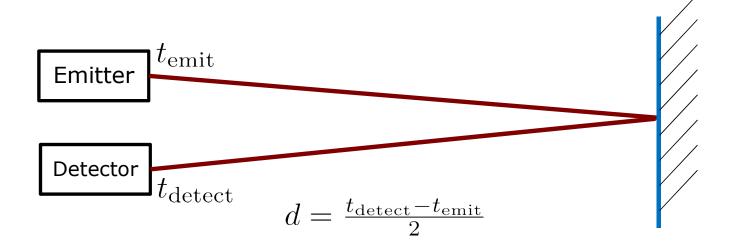


3D LiDAR Sensors



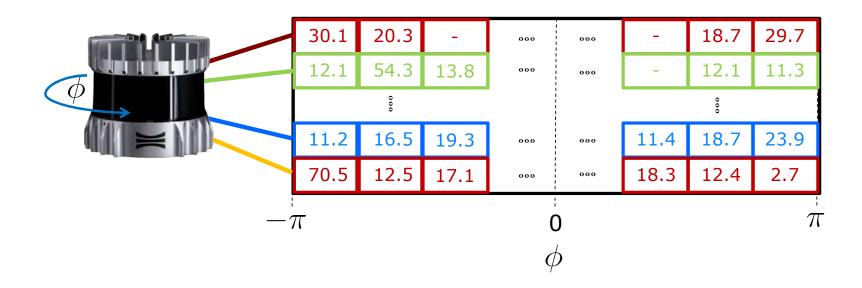
- Rotating multi-beam LiDAR sensors provides 360 degree horizontal field of view
- 10-20 Hz for complete sweep/turn

Measurement Principle



Distance d = time of flight of photons (900 nm-1550 nm)
from emittance to detection

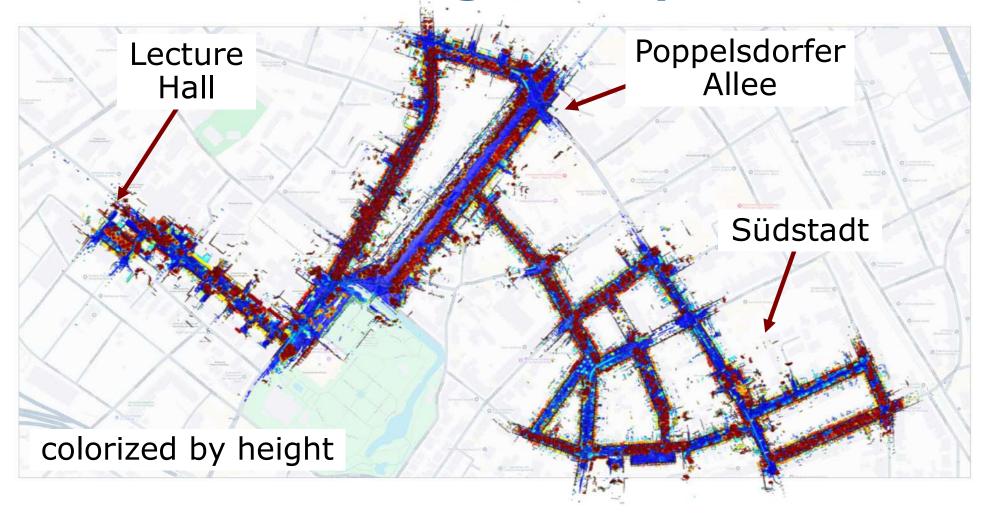
Range Image



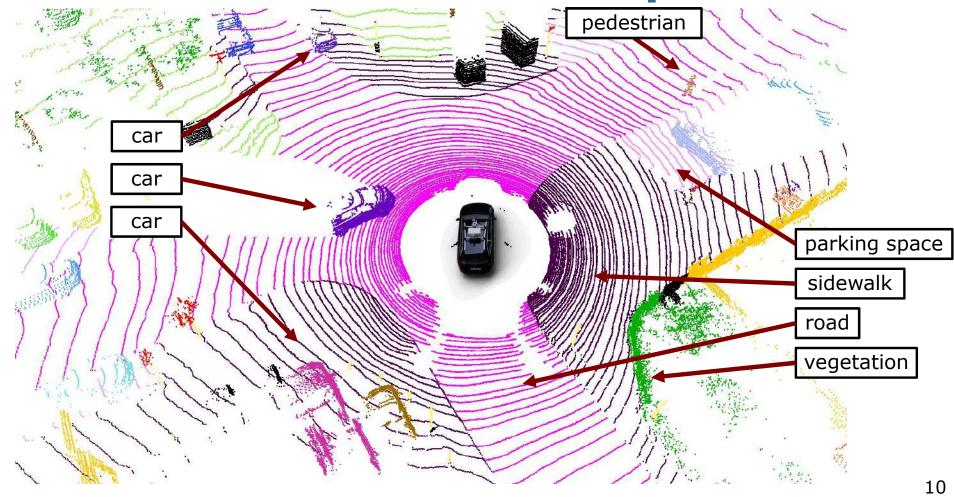
- Range image has ranges for each beam and turn angle ϕ
- Common widths: 1024, 2048

Obtaining 3D LiDAR Data

First Part: Building 3D Maps

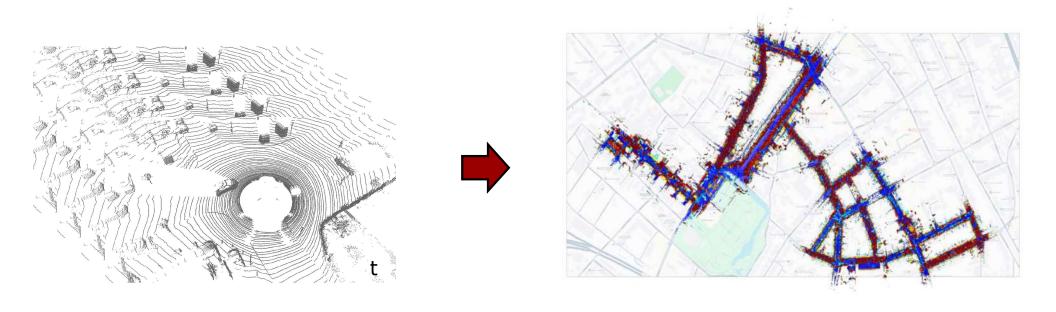


Second Part: Semantic Interpretation



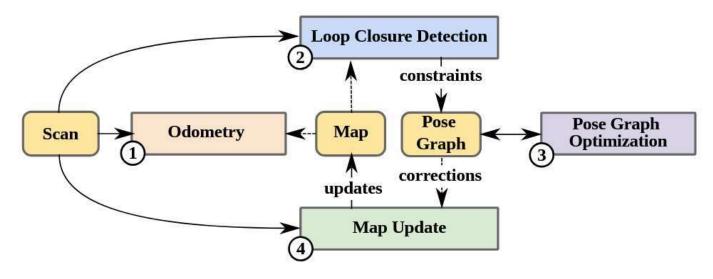
Mapping the Environment

Mapping the Environment



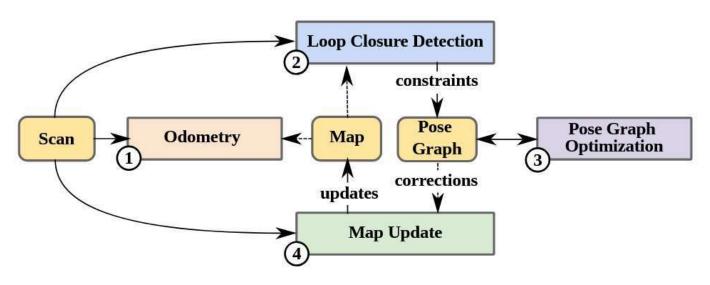
- Input: Sequence of LiDAR scans
- Goal: Build a globally-consistent (geo-referenced) map

LiDAR-based Simultaneous Localization and Mapping (SLAM)



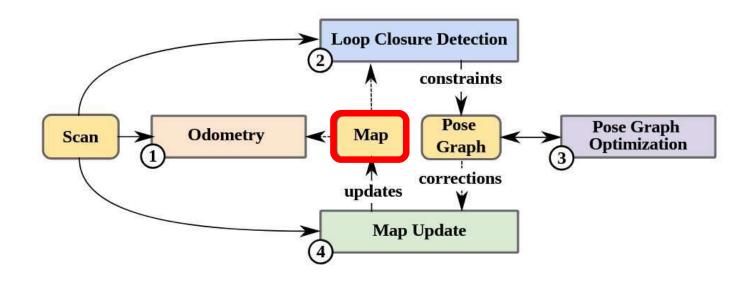
- Sensor pose estimation requires a map (localization)
- Building a map requires sensor poses (mapping)

SLAM in a Nutshell



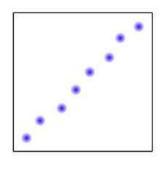
- Odometry = Relative poses estimation between scans
- Loop Closure Detection = Locations revisted?
- Pose Graph Optimization = Globally optimize poses based on relative pose estimates and loop closures

Central Part of SLAM system: Map



- Map plays a key role in a SLAM system
- Commonly: Geometric representations (points, surfaces, ...)

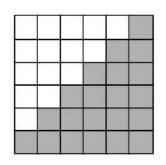
Point-Based Map



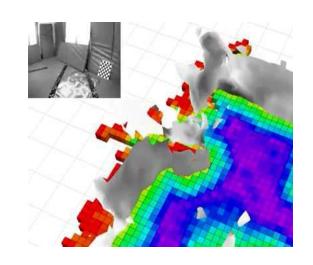
Directly accumulated from measurements

- + Supports elastic map deformation
- Not suitable for planning

Volumetric Map via Signed Distance

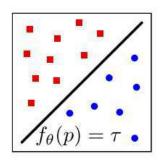


Store occupancy probability or signed distance function (SDF) in voxels



- + Enable planning and mesh reconstruction
- Discrete and memory inefficient
- Not elastic

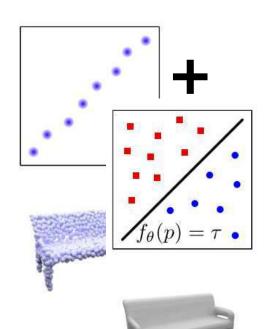
Implicit Neural Map



Model SDF with a neural network

- + Enable planning and mesh reconstruction
- + Continuous, differentiable, and compact
- Not elastic

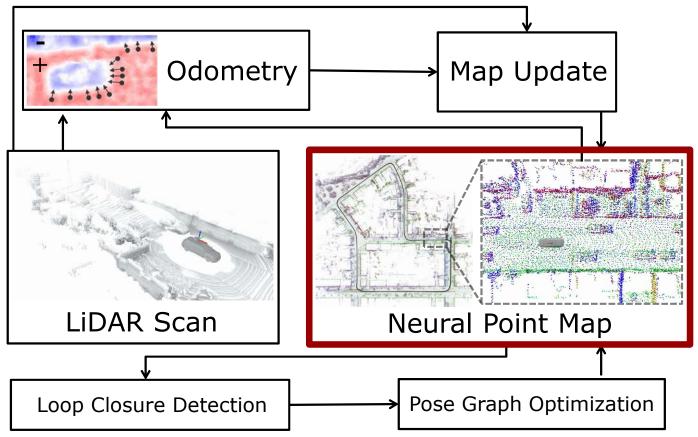
The Best of Both Worlds: Point-Based Implicit Neural (PIN) Map



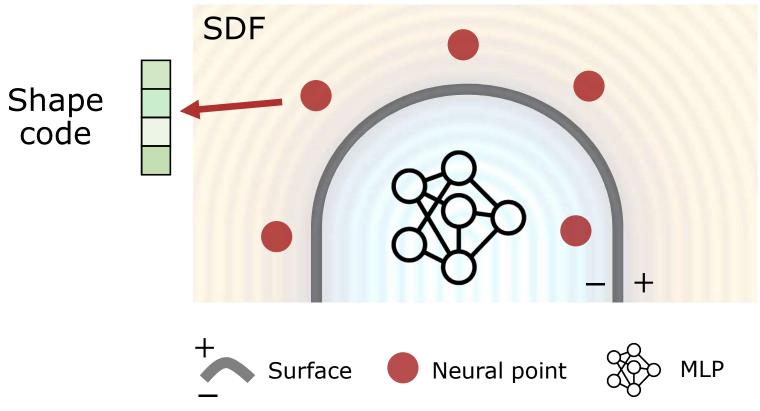
Model SDF with locally defined neural point features and a globally shared MLP

- + Enable planning and mesh reconstruction
- + Continuous, differentiable
- + Elastic to map deformation

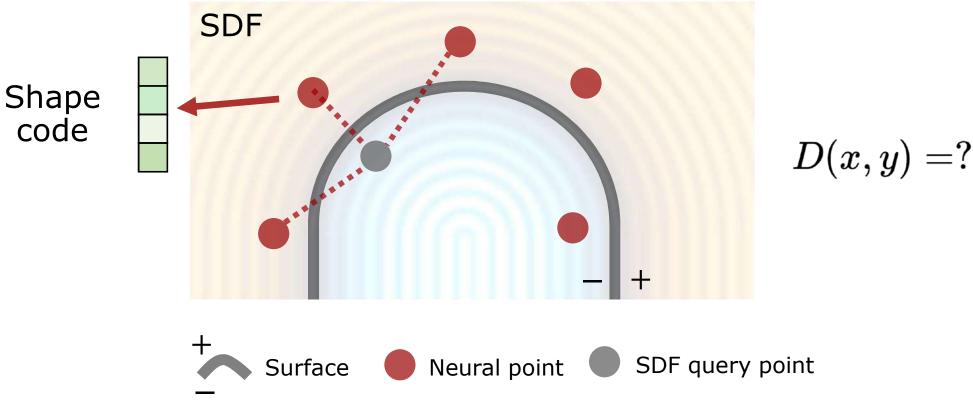
PIN-SLAM Pipeline



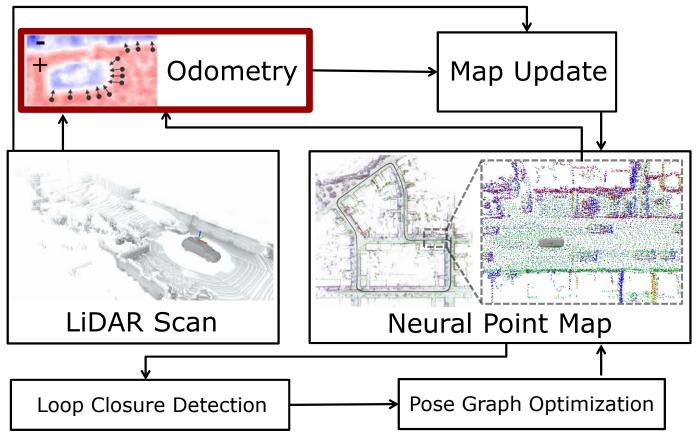
Point-Based Neural Distance Field

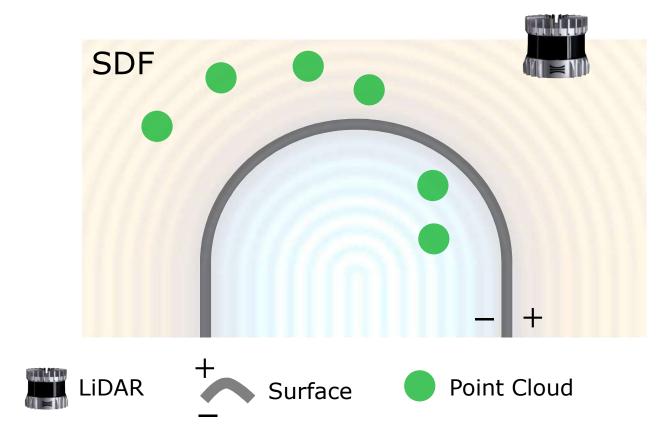


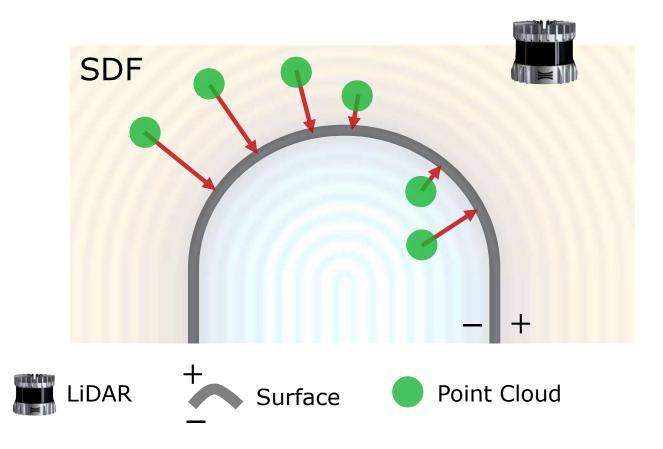
Query SDF From Neural Points

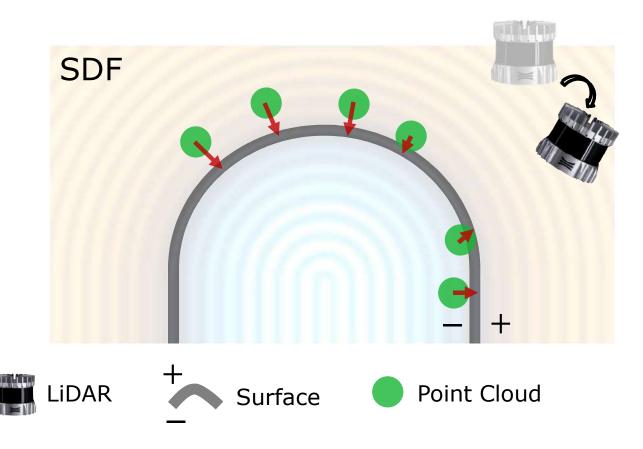


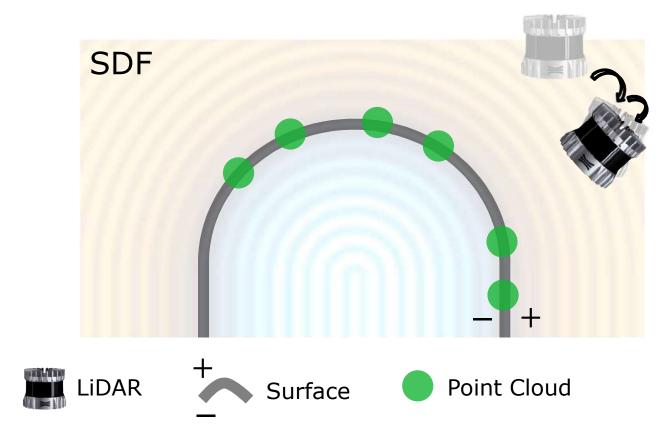
PIN-SLAM Pipeline



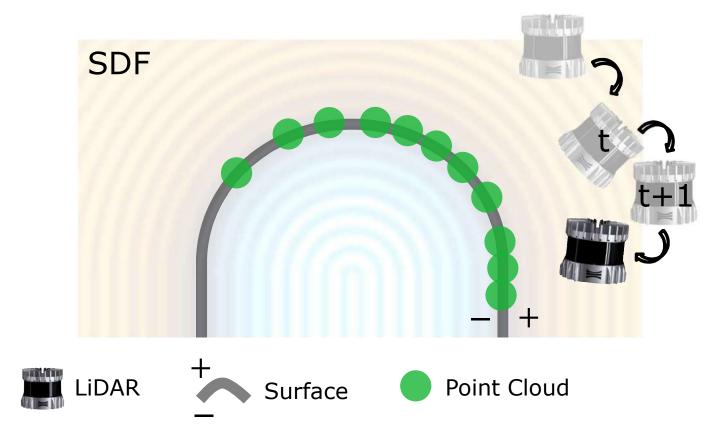




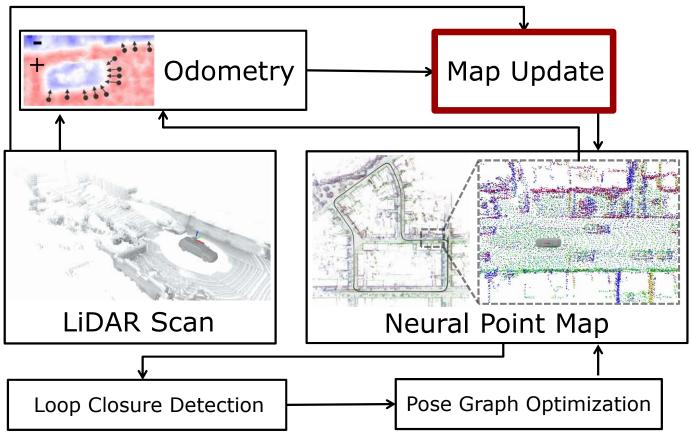


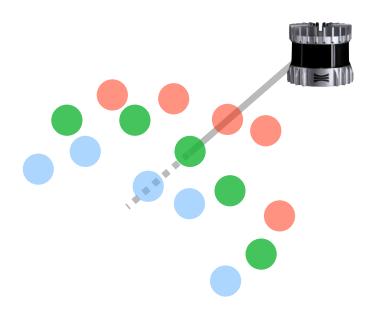


LiDAR Odometry Using Distance Field

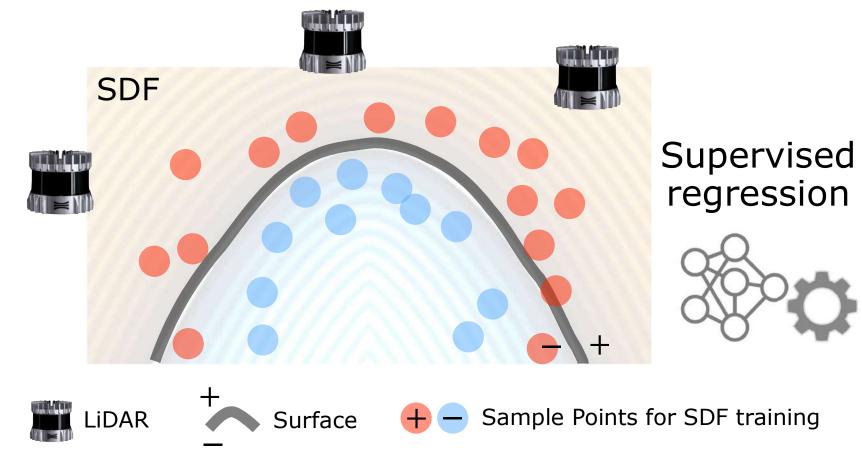


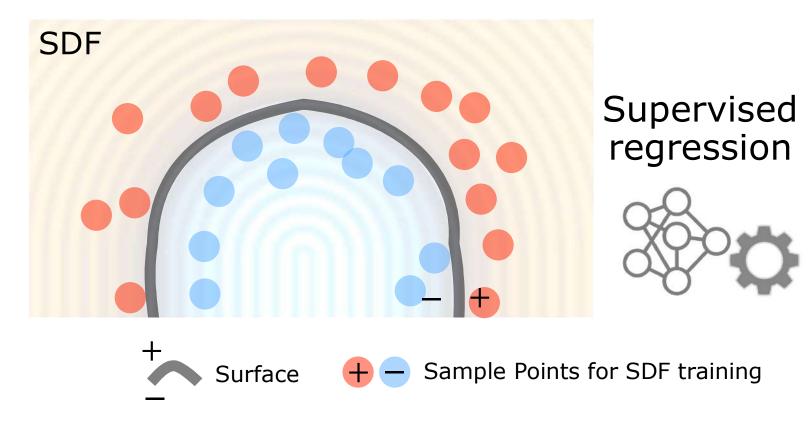
PIN-SLAM Pipeline

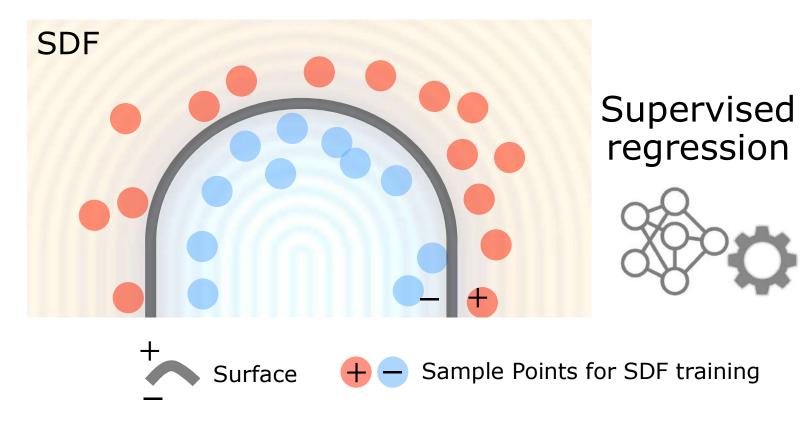




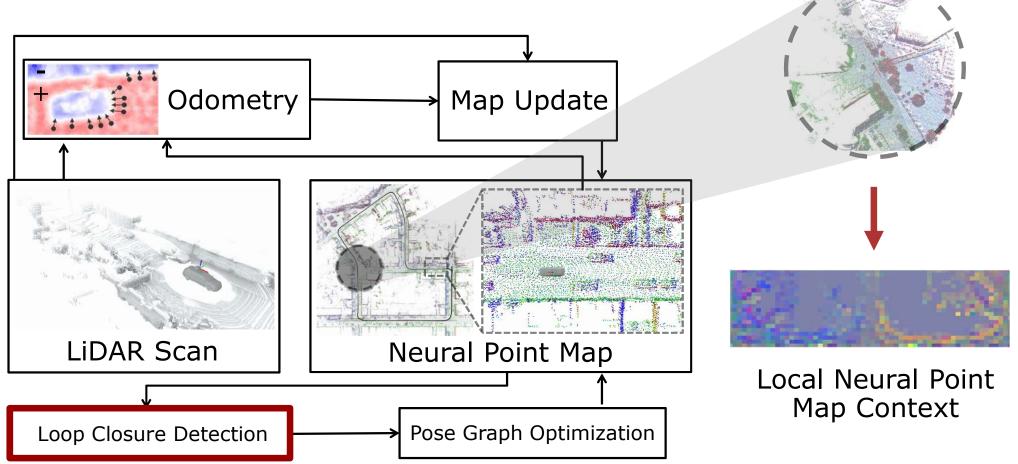
Sample Points for SDF training



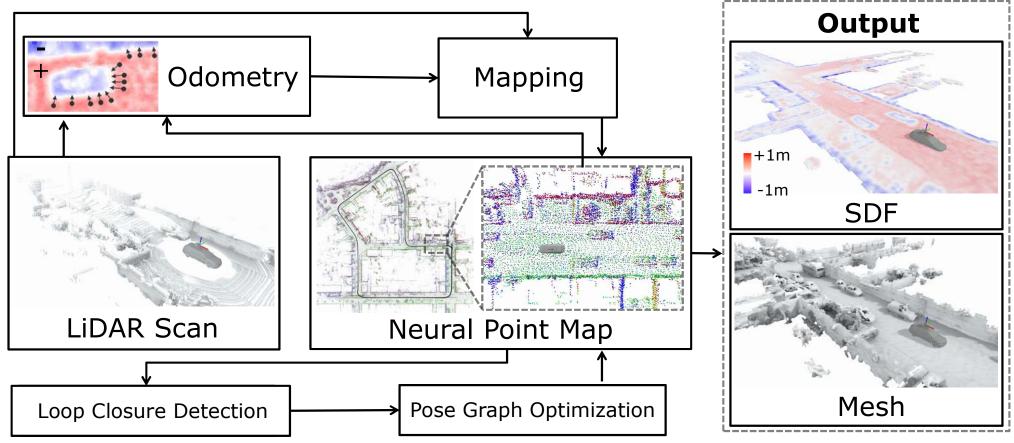




PIN-SLAM Pipeline

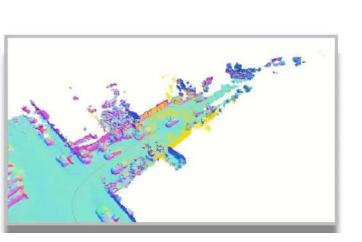


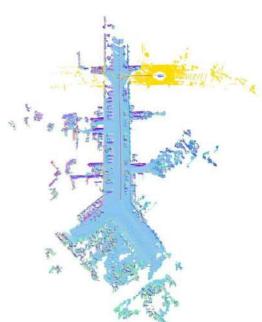
PIN-SLAM Output



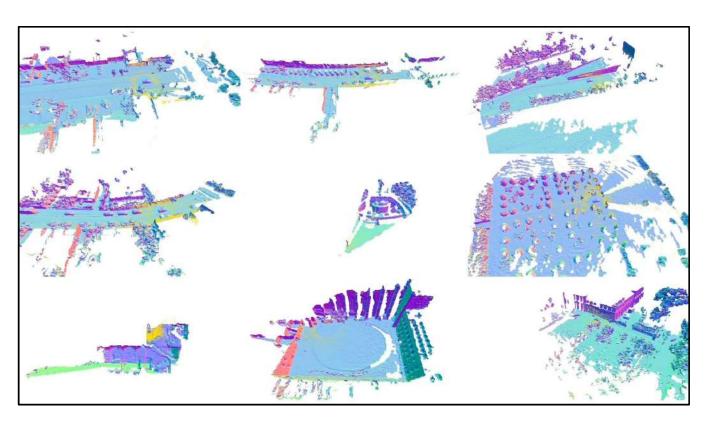
Pan et al. PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency. T-RO, 2024.

KITTI seq. 00

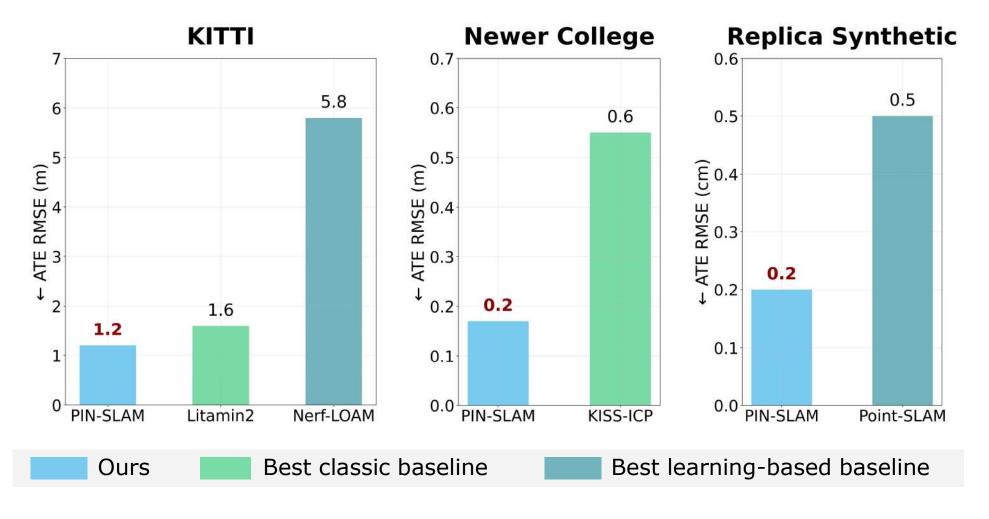




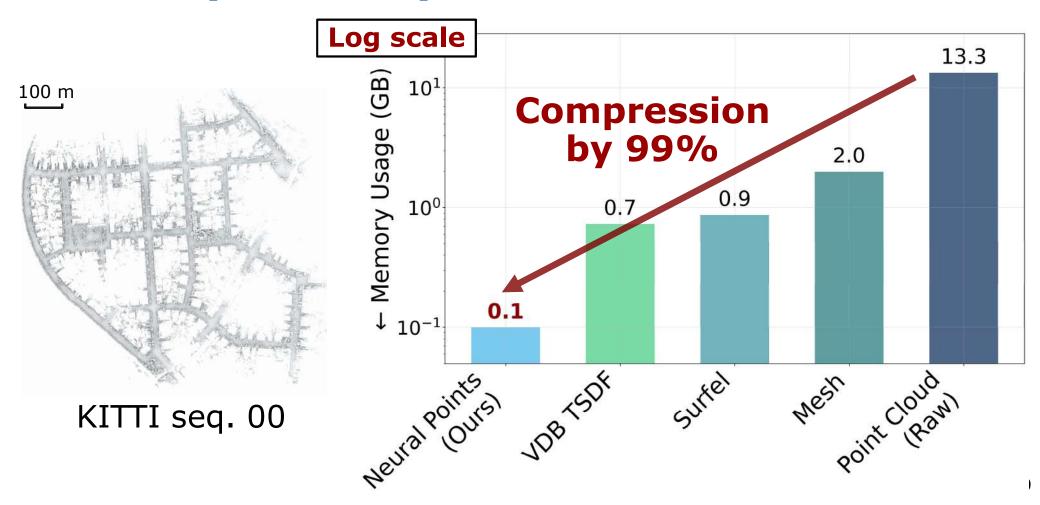
PIN-SLAM Works with Various LiDARs



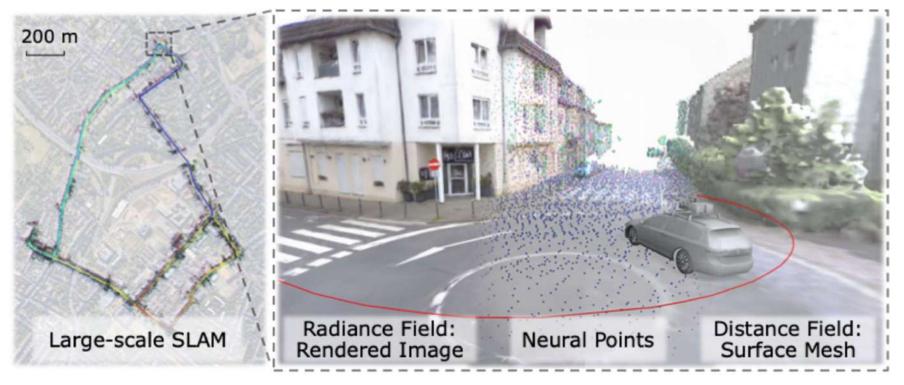
PIN-SLAM Achieves Top Pose Accuracy



Our Map is Compact

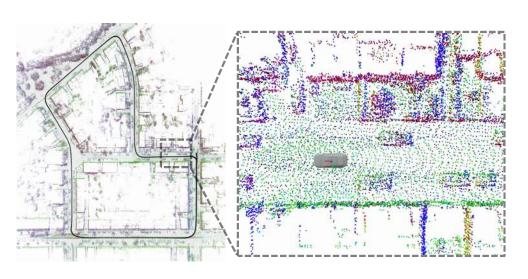


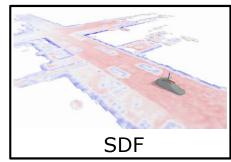
Neural Points with Gaussian Splatting

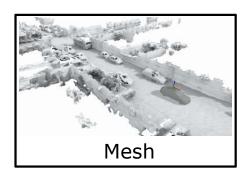


- Neural points quite flexible: also represent Gaussian splats
- Allows to additionally represent visual appearance

Summary: Point Implicit Neural Maps



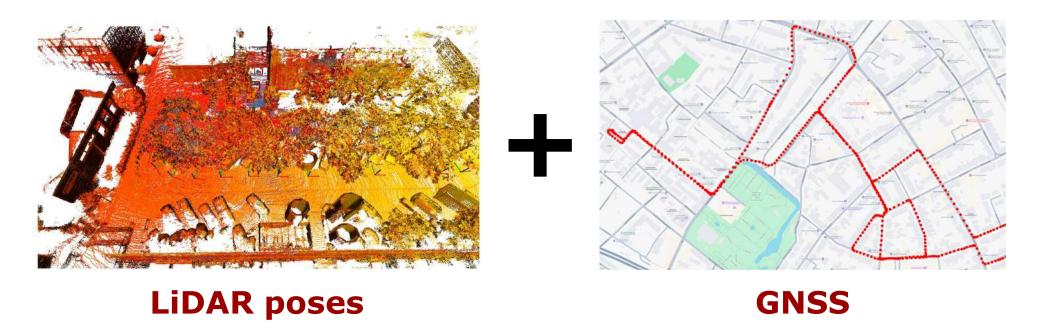




- Point-based map representation with per-point features
- Can be optimized to represent SDF and radiance field (color)
- Loop closures provide via pose graph optimization globally consistent trajectory

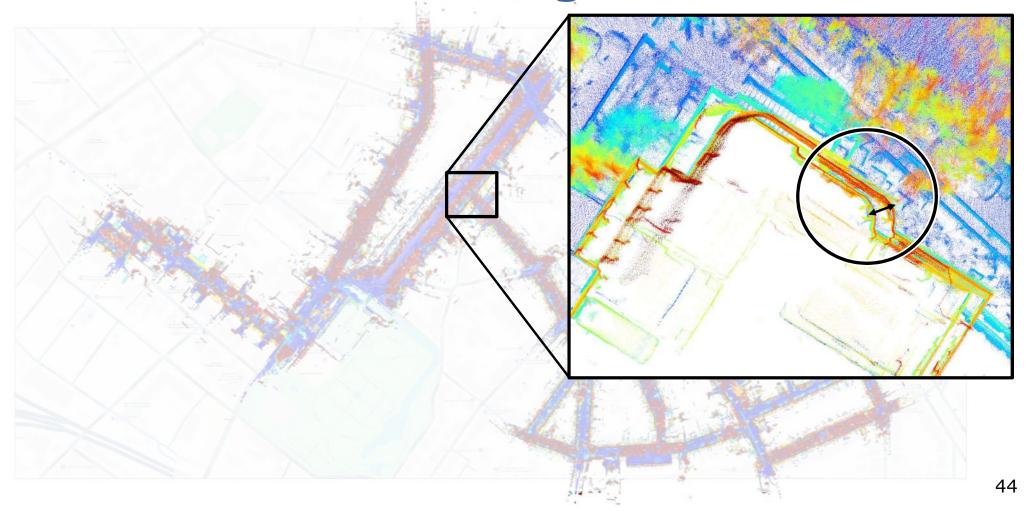
Georeferenced Map

- LiDAR SLAM for local consistency
- GNSS for geo-referencing and global consistency



Standard: LiDAR SLAM + GNSS

However: Local Misalignment



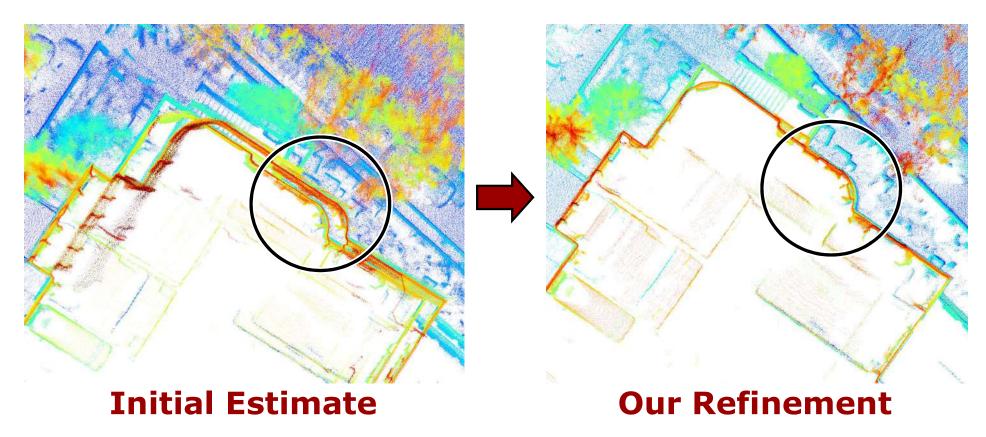
LiDAR Bundle Adjustment

- Starting from LiDAR SLAM + GNSS estimate
- Goal: fix local misalignments
- Idea: align each scan to each other!
- Problem: Computationally challenging to jointly optimize all scan poses!

Our Solution to Joint Alignment

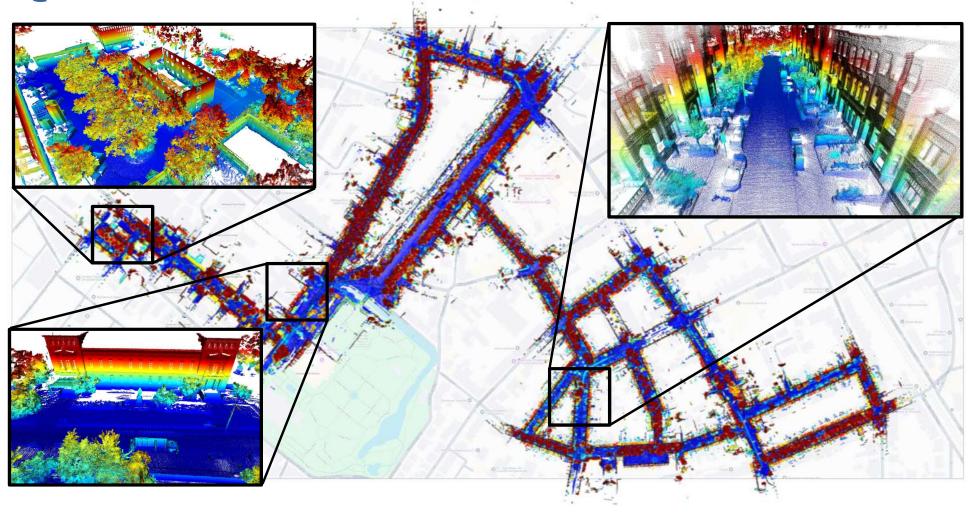
- Assumption: Initialization near to global optimum
- Sample nearby LiDAR scans to make it tractable
- Continuous trajectory to account for moving LiDAR sensor

Qualitative Results: Local

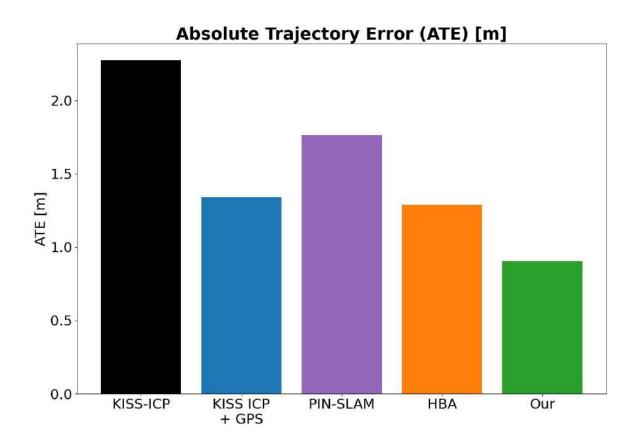


Wiesmann et al. Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories, arXiv, 2025.

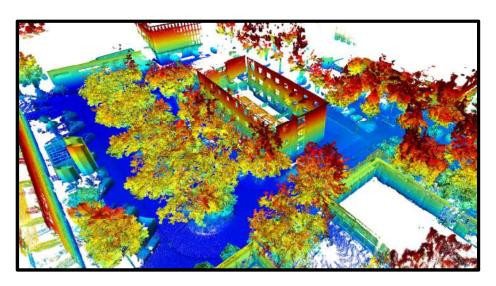
Qualitative Results: Global

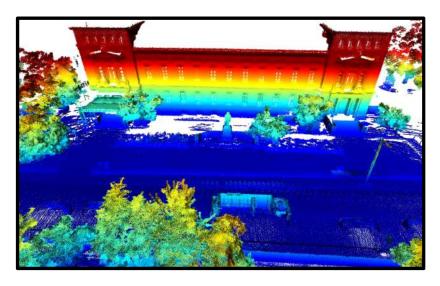


Quantitative Results



Summary: LiDAR Bundle Adjustment

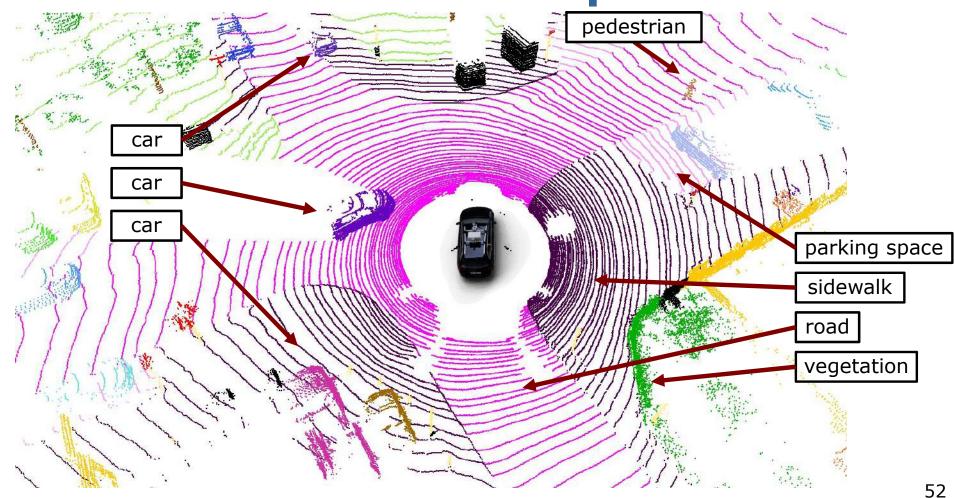




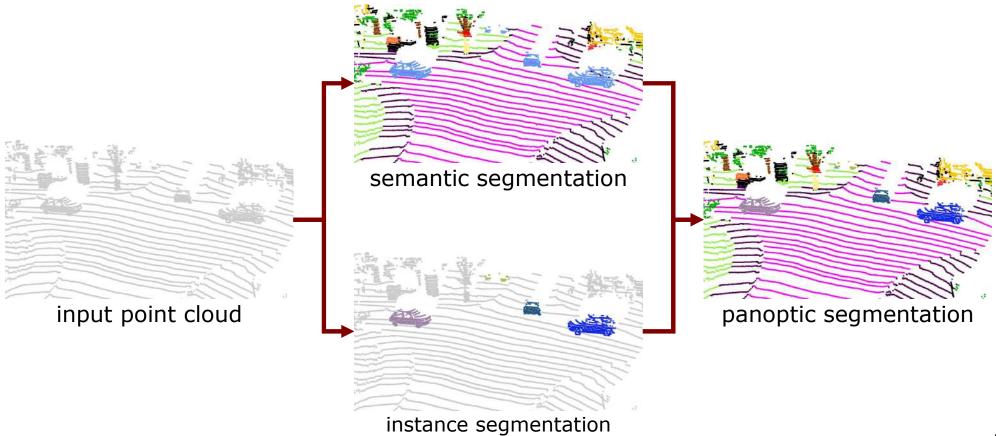
- Refine initial pose estimate
- Joint alignment of all scans
- Special: estimate continuous trajectory
- Allows centimeter-accurate mapping

Understanding the Environment

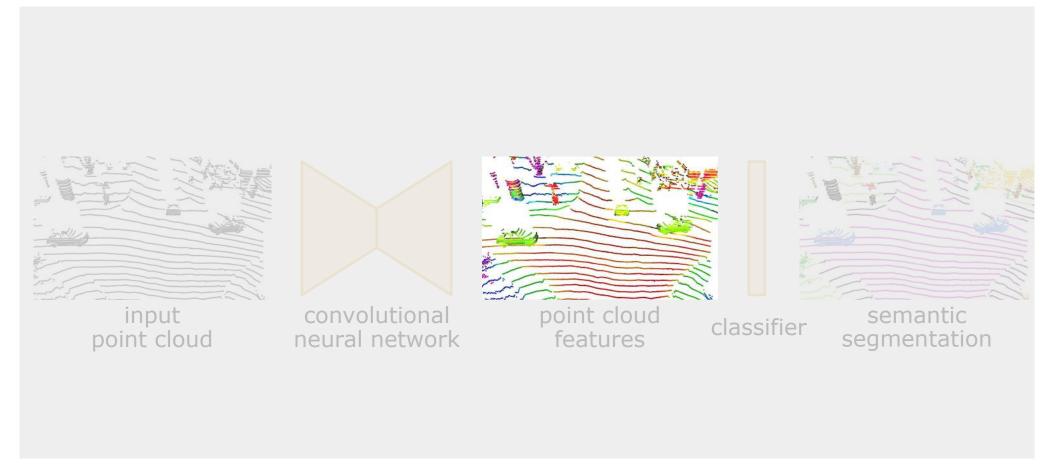
Reminder: Semantic Interpretation



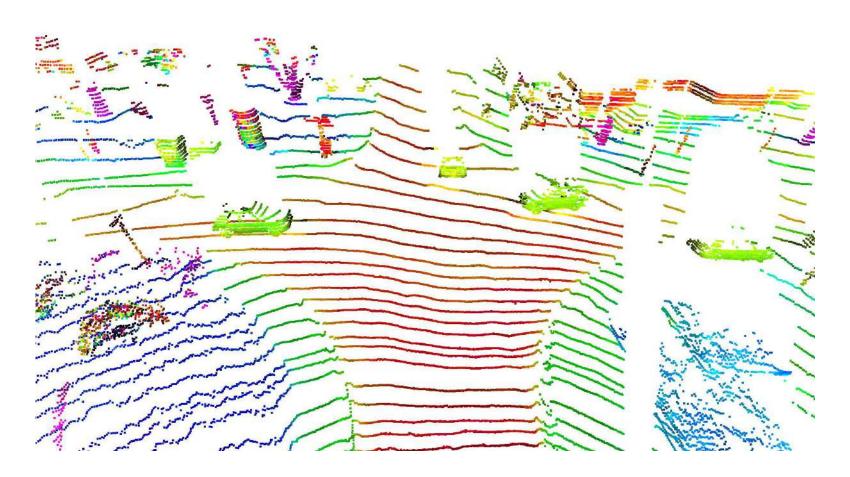
Traditional Panoptic Segmentation



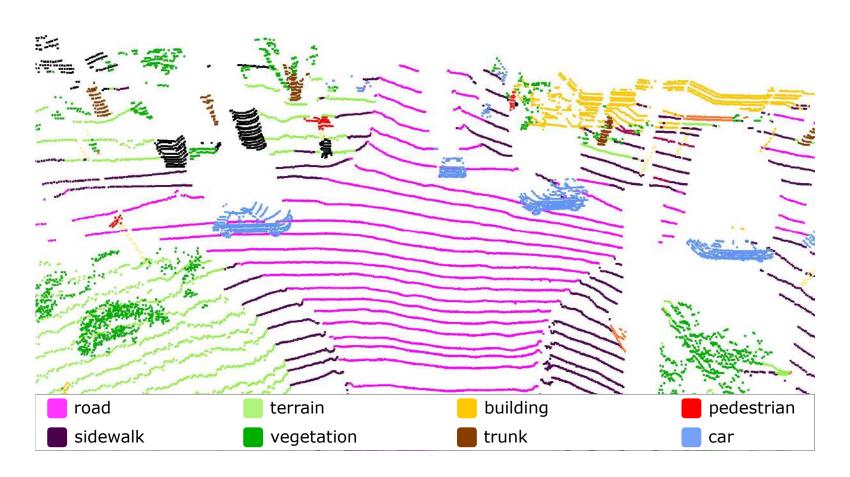
Feature Extraction



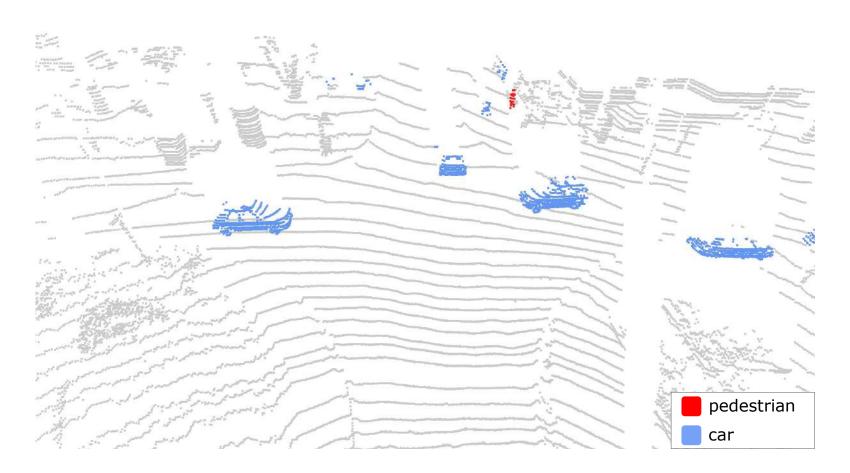
Point Cloud Features (PCA)



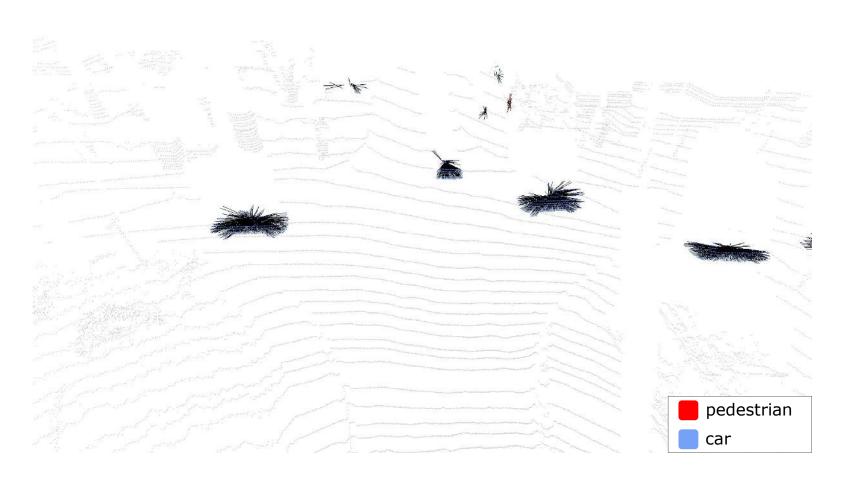
3D Semantic Segmentation



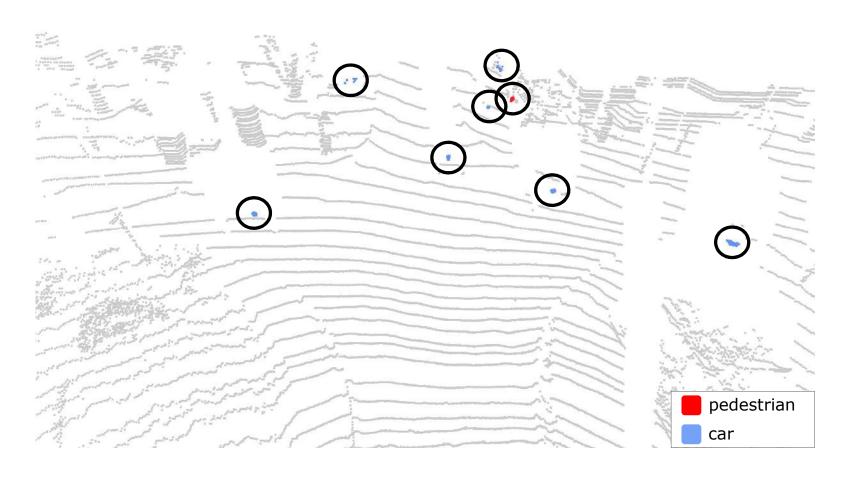
Filtering Stuff Classes



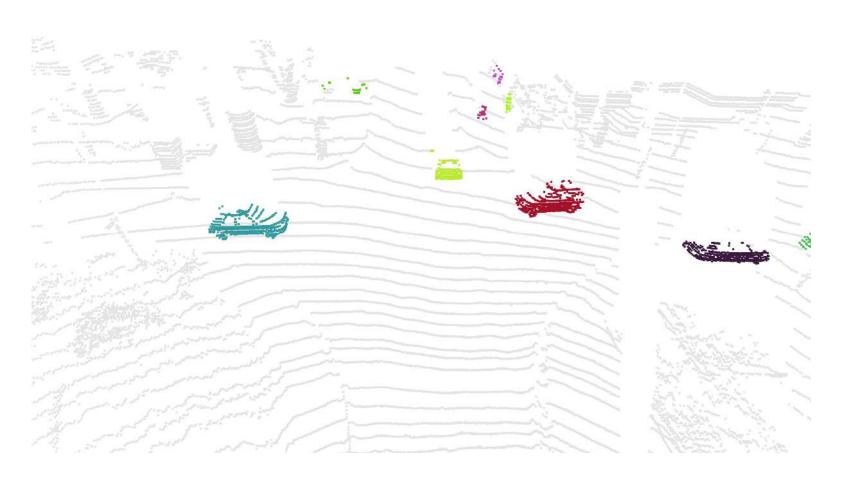
Predicting Offsets to Instance Centers



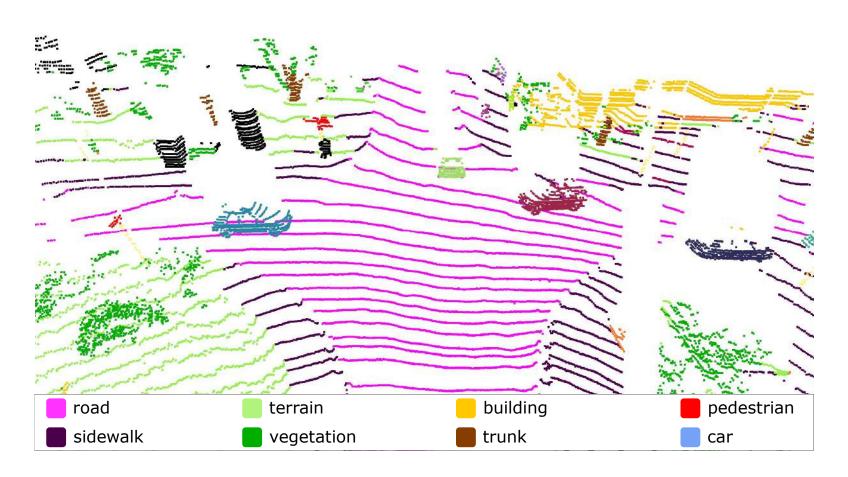
Using Offsets and Clustering



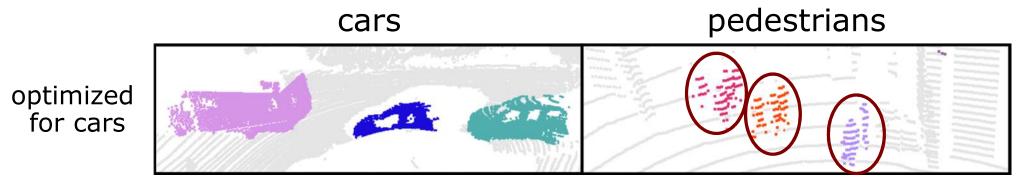
3D Instance Segmentation



3D Panoptic Segmentation



Limitations of Clustering



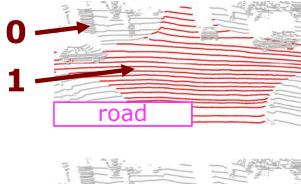
- Clustering requires hand-tuning parameters
- Cannot learn parameters from data
- Optimizing for proxy task: offset prediction

How can we avoid clustering?

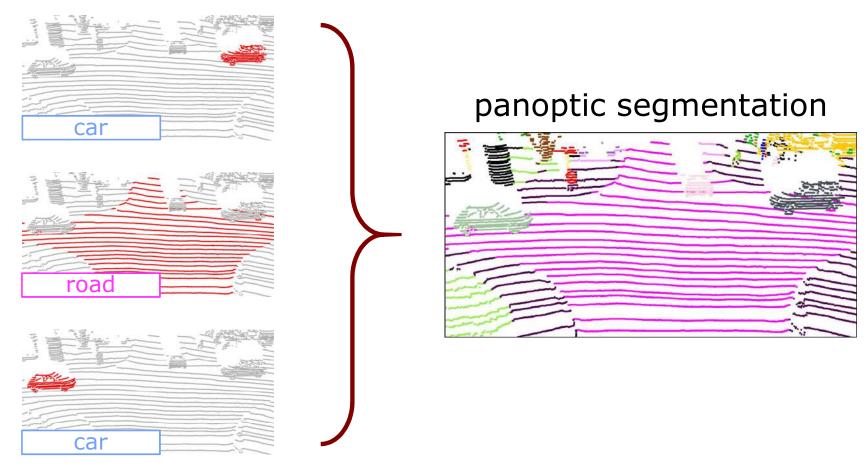
Panoptic Segmentation Using Masks



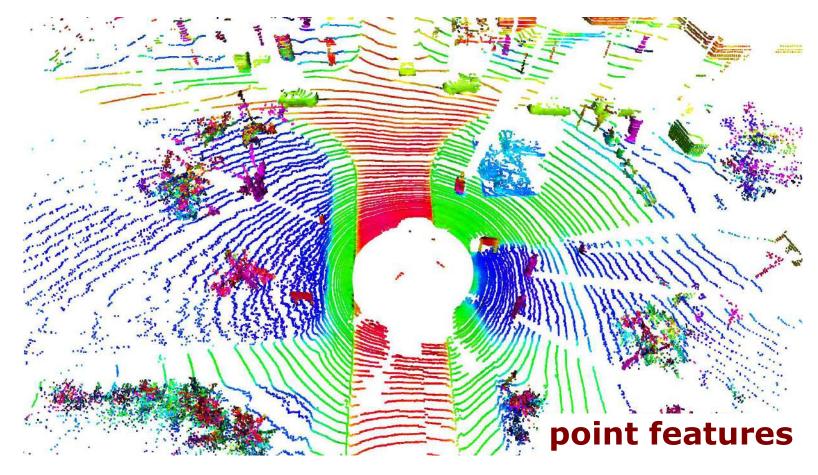
- Binary mask + semantic class
- "Things" instance or "stuff" class
- Mask with class and instance ID



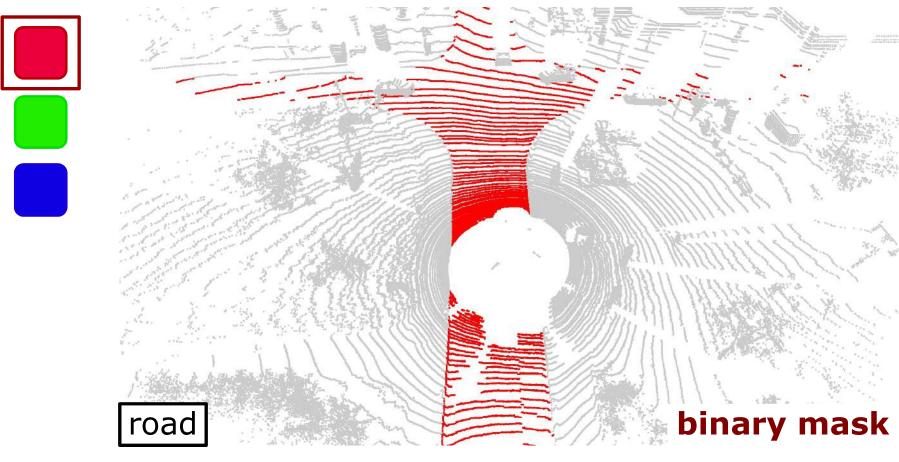
Panoptic Segmentation Using Masks



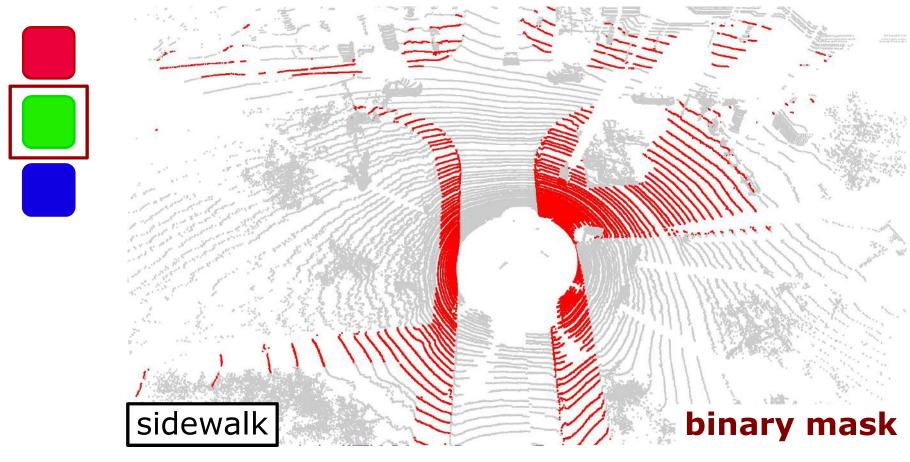
Feature Extraction



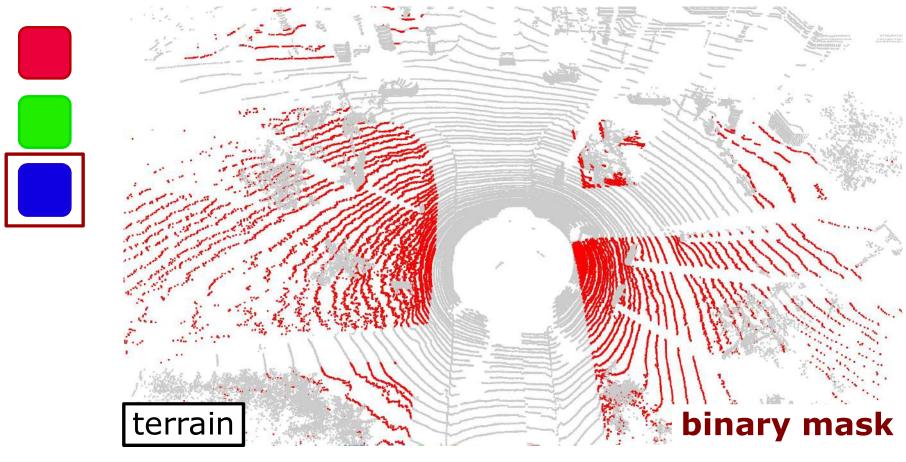
Queries as Mask Proposals



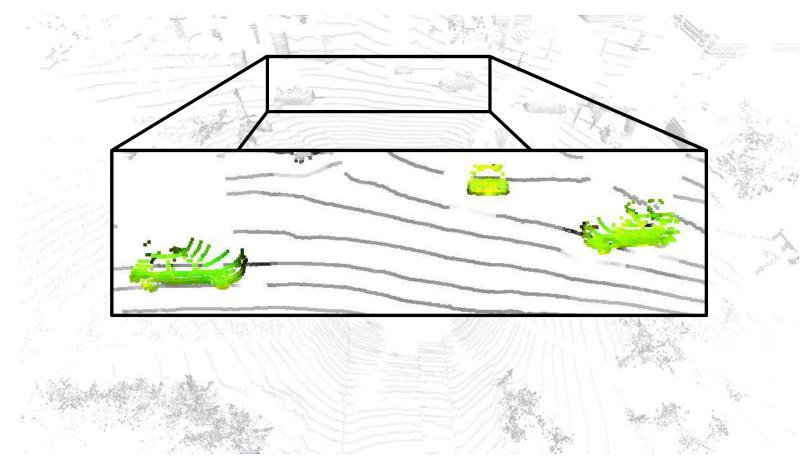
Queries as Mask Proposals



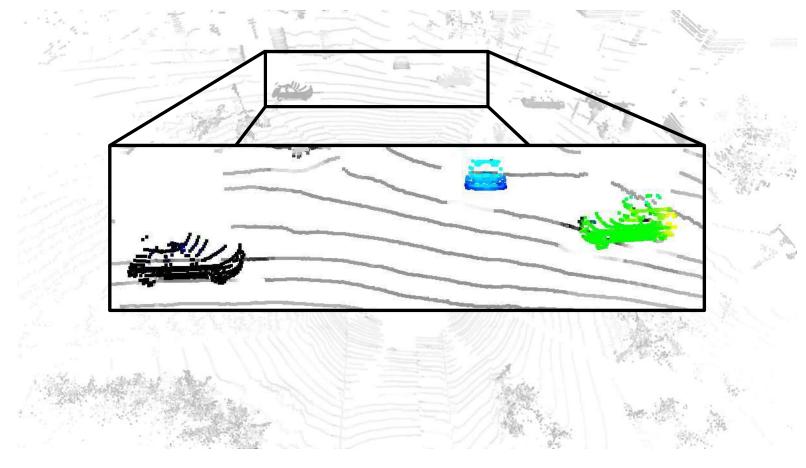
Queries as Mask Proposals



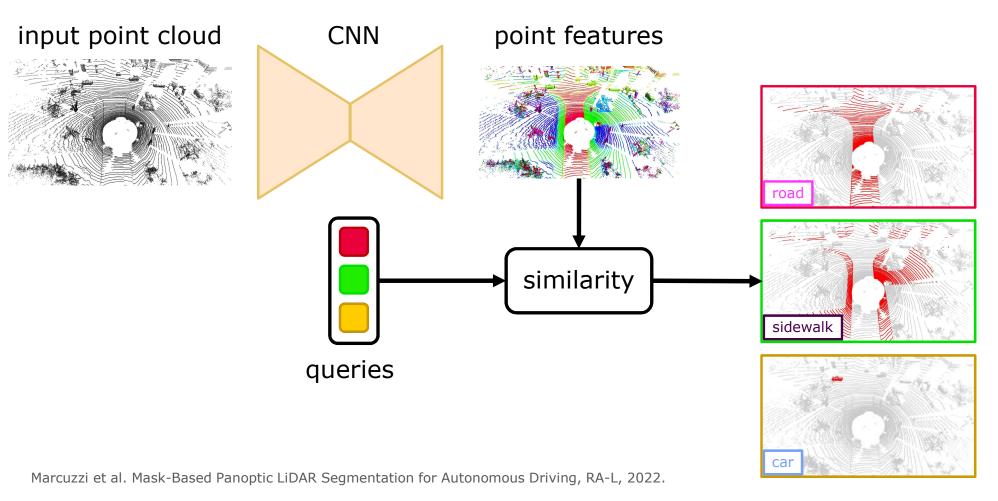
Features for Things



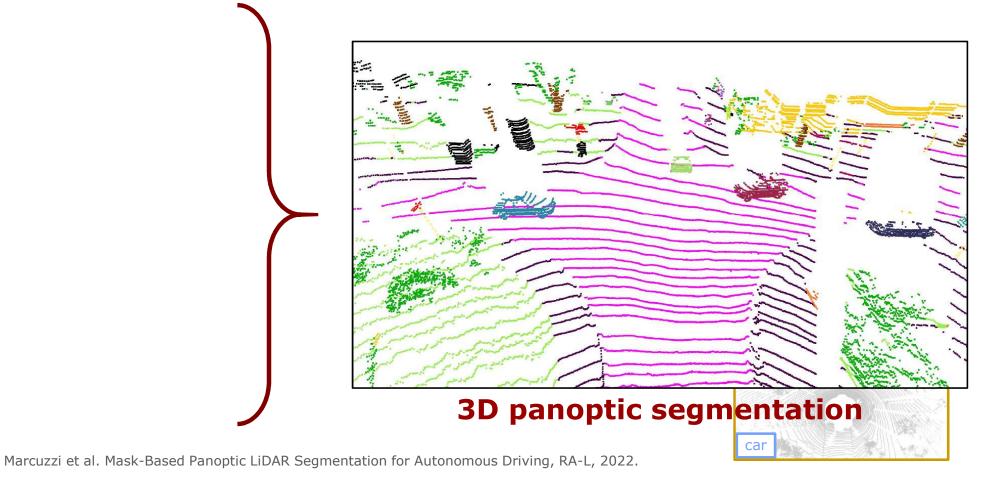
Adding Positional Information

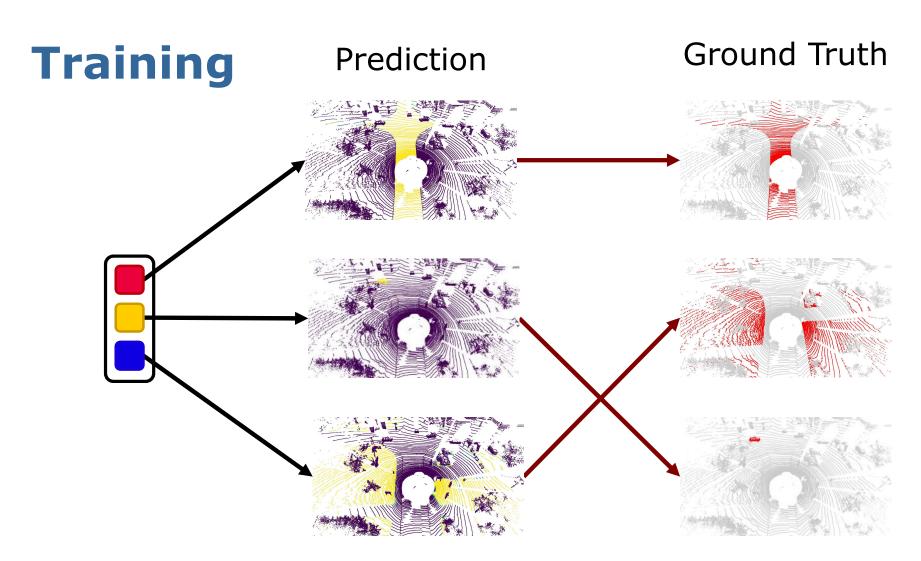


Mask-Based 3D Panoptic Segmentation



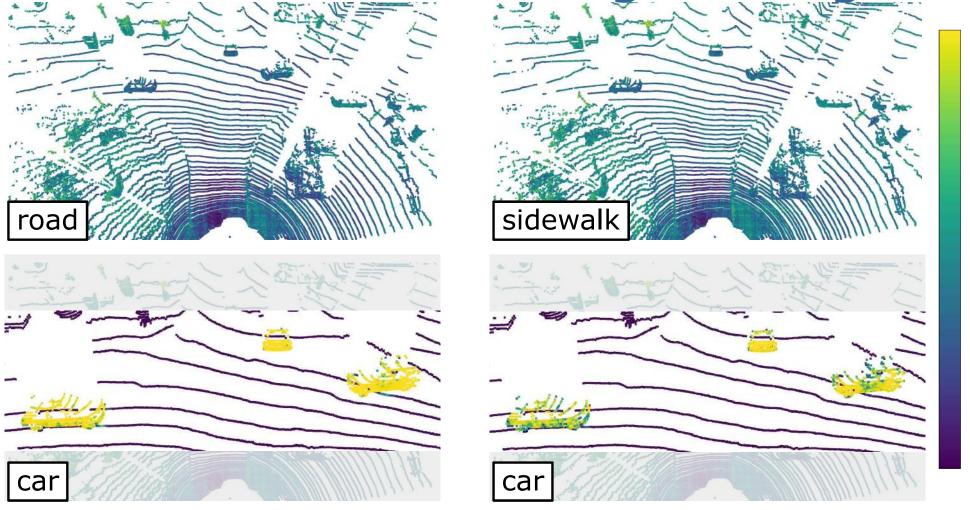
Mask-Based 3D Panoptic Segmentation





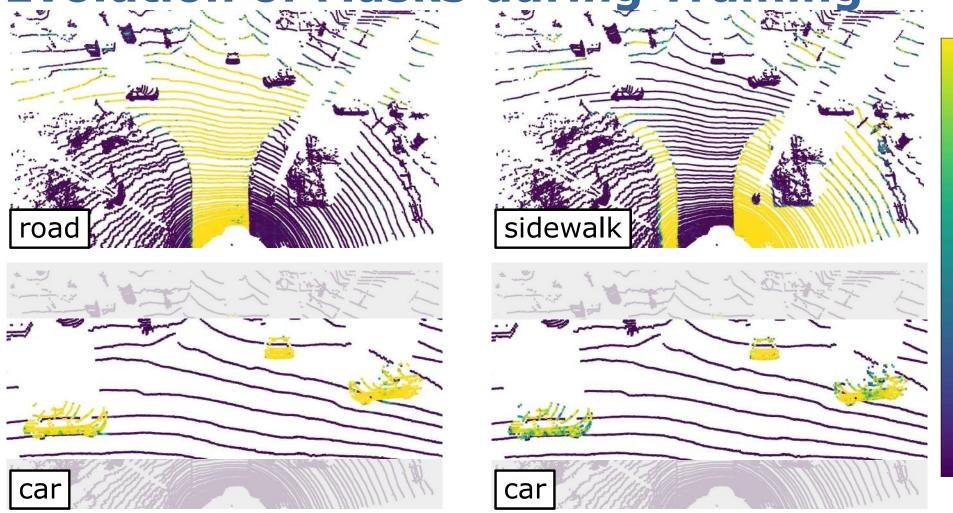
Marcuzzi et al. Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving, RA-L, 2022.

Evolution of Masks during Training



75

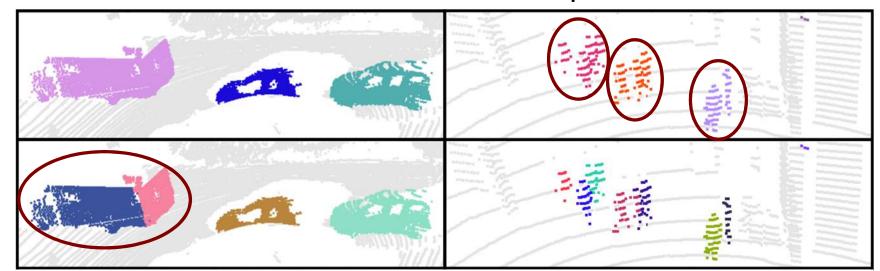
Evolution of Masks during Training



76

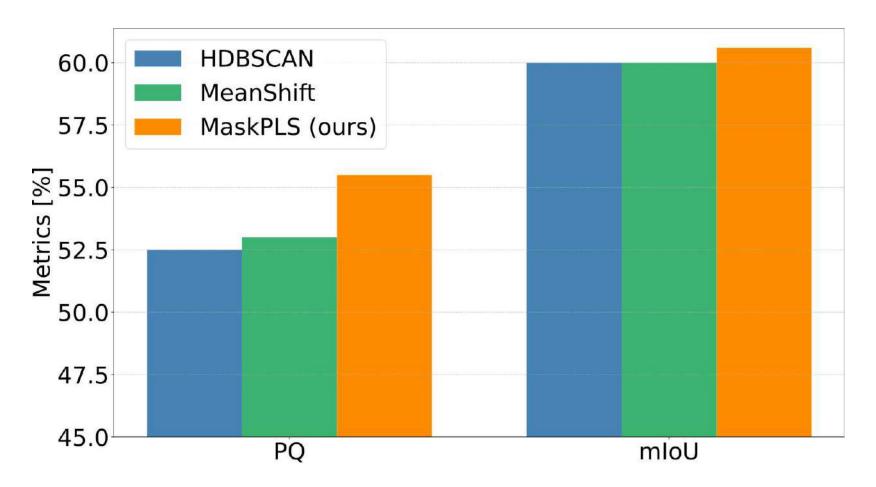
Results for Different Classes

cars pedestrians

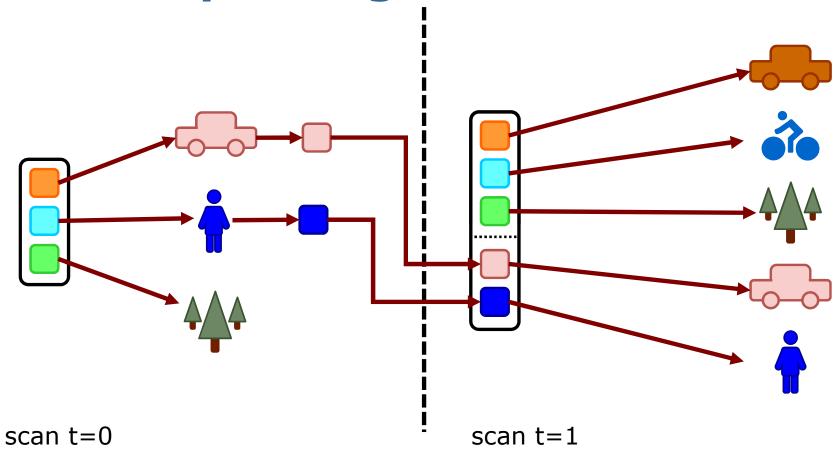


ours

Comparison with Clustering

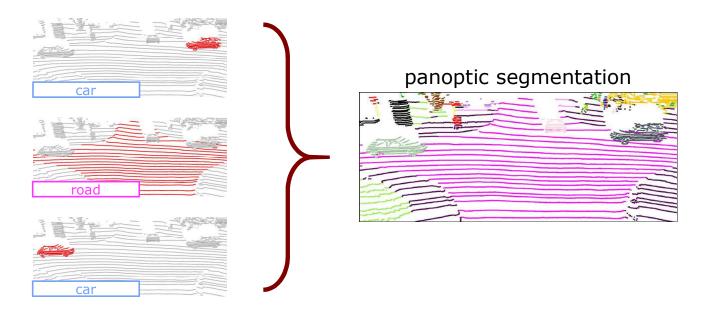


4D Panoptic Segmentation



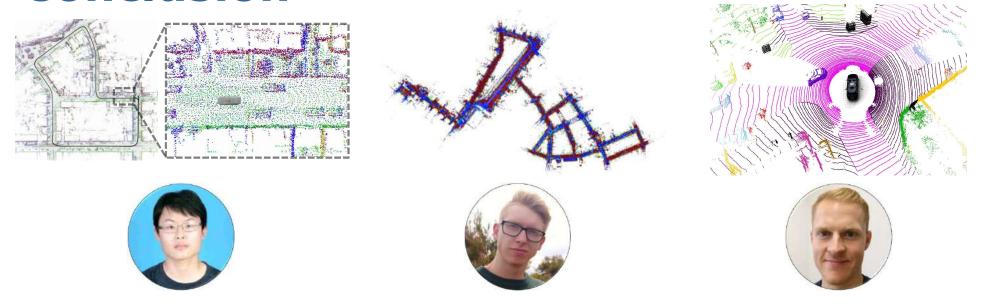
4D Panoptic Segmentation

Summary: Mask-based Segmentation



- Rethinking 3D panoptic segmentation as mask prediction
- Unified handling of "stuff" and "thing" classes
- No hyperparameter tuning for clustering needed!

Conclusion



- 3D LiDAR-based mapping using a flexible neural point-based representation
- Refinement with continuous-trajectory bundle adjustment
- Mask-based 3D panoptic segmentation

Thank you for your attention!